booki

-10%

Advanced Neuromuscular Exercise Physiology

ISBN: 9780736074674

Autor: Phillip Gardiner

Editora: HUMAN KINETICS

Número de Páginas: 248

Idioma: Inglês

Data Edição: 2011

98,55 €109,50 €
Poupa: 10,95 € | desconto de 10%

Promoção válida das 00:00 do dia 1-jan-2024 às 23:59 do dia 31-dez-2024.

A eventual indisponibilidade de stock será comunicada em 24/48h

Advanced Neuromuscular Exercise Physiology uses a mix of biochemistry, molecular biology, neurophysiology, and muscle physiology to provide a synthesis of current knowledge and research directions in the field. The first text devoted solely to the topic, Advanced Neuromuscular Exercise Physiology assists readers in identifying current directions in research and new avenues for exploration.

Recognizing the rapid changes occurring in the field of neuromuscular exercise physiology, the text provides readers with a foundation of knowledge while detailing the most recent findings. Though the text is written at an advanced level, the author succeeds at making the content accessible. Analyses of research findings and research applications are highlighted in special sidebars. Detailed illustrations and graphs assist readers in understanding research findings. Chapter summaries also help readers determine the key issues presented for each topic.

The author draws attention to a variety of important topics in the field, beginning with a discussion of motor unit types, muscle blood flow, and metabolic pathways in control of metabolism, including a special discussion of the effects of type 2 diabetes. Next, the topic of fatigue is discussed. The author explains possible peripheral and central contributors to fatigue. Chapters 6 and 7 focus on whole-body endurance training, including the effects of aerobic endurance training on the protein profiles of muscle fibers and on the central nervous system. Of particular interest is the applicability of research information to the exercise rehabilitation of individuals with compromised nervous system function, such as spinal cord injury, other trauma, and neuromuscular diseases. The final chapters are devoted to resistance training, including the phenotypic responses of muscles to isometric, slow isotonic, lengthening, and plyometric training. An overview of the effects of resistance training on the nervous system is offered along with clinical applications.

Within the dynamic field of neuromuscular exercise physiology, ideas of how nerves and muscles collaborate during acute and chronic exercise are continually evolving. Advanced Neuromuscular Exercise Physiology offers an authoritative perspective of current research in the field as it seeks to encourage discussion, further study, and new research directions.

Human Kinetics’ Advanced Exercise Physiology Series offers books for advanced undergraduate and graduate students as well as professionals in exercise science and kinesiology. These books highlight the complex interaction of the various systems both at rest and during exercise. Each text in this series offers a concise explanation of the system and details how each is affected by acute exercise and chronic exercise training. Advanced Neuromuscular Exercise Physiology is the third volume in the series.
Chapter 1. Muscle Fibers, Motor Units, and Motoneurons
Muscle Heterogeneity
Orderly Motor Unit Recruitment
Smaller Motoneurons Are More Excitable
Membrane Resistivity and Motoneuron Size
Other Factors Determining Action Potential Generation
Minimal Firing Rates and Afterhyperpolarization Durations
Motoneuron Current–Frequency Relationship and Excitability
Late Adaptation
Motoneuron PICs
Summary

Chapter 2. Motor Unit Recruitment During Different Types of Movements
Measuring Human Motor Unit Recruitment
Influence of Task
Slow-Ramp Isometric Contractions
Maintained Isometric Contractions
Isometric Contractions in Various Directions
Isometric Contractions Versus Movements
Lengthening Contractions
Cocontraction of Agonists and Antagonists
Unilateral Versus Bilateral Contractions
Rhythmic Complex Contractions
MVCs
Summary

Chapter 3. Muscle Blood Flow and Metabolism
Muscle Blood Flow
Muscle Metabolism
Summary

Chapter 4. Peripheral Factors in Neuromuscular Fatigue
Intramuscular Factors and Muscle Force
Involvement of Structures Other Than Muscle
Research From Animal Experiments
Summary

Chapter 5. Central Factors in Neuromuscular Fatigue
Motoneuron Activity During Sustained Contractions
Isometric Versus Anisometric Tasks
Rotation of Motor Units?
Summary

Chapter 6. Muscular Mechanisms in Aerobic Endurance Training
Chronic Muscle Stimulation
Coordination of Muscle Protein Systems
Pretranslational Control
Translational Control
Posttranslational Modifications
Simultaneous Expression of Isoforms
Adaptations Can Occur Ex Vivo
Adaptations Appear in a Specific Sequence
Thresholds of Activity for Adaptation
Chronic Stimulation and Atrophy
Metabolic Signals and the Adaptive Response
Degenerative and Regenerative Processes
Summary

Chapter 7. Neural Mechanisms in Aerobic Endurance Training
Adaptation of the Neuromuscular Junction
Adaptations to Endurance Training
Responses of Motoneurons
Adaptations of Spinal Cord Circuits
Summary

Chapter 8. Muscle Molecular Mechanisms in Strength Training
Acute Responses in Protein Synthesis and Degradation
Connective Tissue Responses
Role of Muscle Damage
Role of Dietary Supplements
Summary

Chapter 9. Muscle Property Changes in Strength Training
Increased Muscle Fiber Cross-Sectional Area
Fiber Type Composition
Muscle Fiber Number
Muscle Composition
Muscle Architecture
Muscle Fiber Ultrastructure
Evoked Isometric Contractile Properties
Changes in Muscle Force, Velocity, and Power
Fatigue Resistance
Role of Eccentric Contractions
Summary

Chapter 10. Neural Mechanisms in Strength Training
Gains in Strength Versus Muscle Girth
Strength Gains Show Task Specificity
Surface EMG Response During MVC
Imaginary Strength Training
Reflex Adaptations
Cross Education
Decreased Activation of Antagonists
Changes in Motor Unit Recruitment
Changes in Motor Cortex
Summary


Phillip F. Gardiner, PhD, is a professor and director of the Health, Leisure & Human Performance Research Institute at the University of Manitoba in Winnipeg. He holds professorial positions in kinesiology and physiology and is a member of the Spinal Cord Research Center. Author of the Human Kinetics books Neuromuscular Aspects of Physical Activity (2001) and Skeletal Muscle Form and Function (coauthor, 2006), Dr. Gardiner has also published over 100 research articles on neuromuscular system adaptability.

In 2007, Dr. Gardiner received the highest award bestowed by the Canadian Society for Exercise Physiology, the CSEP Honour Award. He was also awarded a Tier I Canada Research Chair at the University of Manitoba in 2002, which was subsequently renewed for an additional 7 years following peer review in 2009.

Dr. Gardiner served as the president of the Canadian Society for Exercise Physiology and as coeditor in chief of the Canadian Journal of Applied Physiology. He is currently chair of the Advisory Board for the Institute of Musculoskeletal Health and Arthritis, part of the Canadian Institutes of Health Research.

Dr. Gardiner resides in Winnipeg, Manitoba, with his wife, Kalan, where he enjoys fly-fishing, brewing his own beer, playing piano, and wrestling with his two Labrador retrievers.

Newsletter

inscrição newsletter

Subscreva a Newsletter Booki e receba todas as nossas novidades e promoções no seu email.

Subscrever

Facebook Linkedin Instagram

Modos de Pagamento

Opções de Envio Vasp Expresso

©Quântica Editora, Lda - Todos os direitos reservados
Praça da Corujeira, 30 - 4300-144 Porto
E-mail: info@booki.pt
Tel.: +351 220 104 872 (custo de chamada para a rede fixa)

Compre online, escolha sites nacionais.

Compre online, escolha sites nacionais.