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Prefácio

Os Métodos Numéricos desempenham um papel central não apenas na Engenharia e
Matemática, mas também em diversas áreas das Ciências, constituindo uma ferramenta
essencial para a modelação e resolução de problemas que não admitem solução analítica
exata.

Este livro apresenta uma abordagem sistemática e integrada à Análise Numérica,
combinando o enquadramento teórico com a aplicação prática dos principais métodos.
A obra encontra-se estruturada de modo progressivo, iniciando-se com o estudo dos
erros e da sua propagação, seguido da análise de equações não lineares, sistemas de
equações lineares, interpolação polinomial, ajuste de funções a dados experimentais
através do método dos mínimos quadrados, integração numérica e, por fim, a resolução
de problemas de valor inicial em equações diferenciais ordinárias.

A elaboração deste manual resulta da experiência docente dos autores no ensino dos
métodos numéricos, durante a qual foi possível identificar uma crescente necessidade
de materiais de apoio que articulem teoria, prática e validação de resultados. Com
frequência, os estudantes manifestam insegurança na aplicação dos conceitos adquiri-
dos, sobretudo na resolução de exercícios. Assim, o presente livro visa colmatar essa
lacuna, oferecendo não apenas soluções comentadas, mas também uma análise crítica
das condições de aplicabilidade e das limitações de cada método.

A obra introduz ainda o Matlab e Python como ferramenta de apoio ao cálculo e à
experimentação numérica, incentivando a utilização de software científico no processo
de aprendizagem e na resolução de problemas matemáticos.

Com o objetivo de tornar o livro acessível e autónomo, cada capítulo inicia-se com um
resumo dos conceitos fundamentais necessários à compreensão dos métodos abordados
e à resolução dos exercícios. Esta estrutura procura equilibrar o rigor matemático com a
vertente aplicada, tornando o texto útil tanto para estudantes de cursos de Engenharia
e Ciências como para docentes e profissionais que pretendam rever e consolidar os
fundamentos dos métodos numéricos.

Prefácio vii



Módulo 1

Erros

Neste capítulo é apresentado um resumo sobre a teoria de erros. Os conceitos
aqui apresentados são essenciais para a resolução (e compreensão das resoluções) dos
exercícios sugeridos.

1.1 Tipos de Erros

Quando recorremos a uma calculadora ou a um computador para resolver numerica-
mente um dado problema matemático, dois tipos de erro podem surgir:

• Erros de arredondamento: as máquinas, de capacidade limitada, não conseguem
representar todos os números reais (é impossível representar infinitas casas deci-
mais);

• Erros de truncatura: surgem sempre que se substitui um problema contínuo por
um discreto, ou quando se substitui um processo de cálculo com um número
infinito de operações, por outro com um número finito.

◦ Suponha que queremos aproximar a função ex usando a expansão de Taylor
em torno de x = 0:

ex = 1 + x +
x2

2!
+
x3

3!
+
x4

4!
+ . . . (1.1)

Se truncarmos a série após o termo de segunda ordem, ficamos com:

ex ≈ 1 + x +
x2

2!
(1.2)

O erro de truncatura é a soma dos termos que foram ignorados:

Erro =
x3

3!
+
x4

4!
+ . . . (1.3)

Erros 9



1.2 Representação de Números Inteiros e Reais

1.2.1 Representação de números inteiros:

Um inteiro N ̸= 0 com n+1 dígitos é representado na base decimal, univocamente,
por

N = ± (dndn−1 . . . d1d0)10
= dn × 10n + dn−1 × 10n−1 + · · ·+ d1 × 101 + d0 × 100,

sendo di um inteiro tal que 0 ≤ di < 10, i = 0, 1, . . . , n, dn ̸= 0.

Exemplo 1 483 = 4× 102 + 8× 101 + 3× 100 = (483)10. □

Se um número inteiro, N ̸= 0 está representado numa outra base b, b ≥ 2 que não
a decimal, então:

N = ± (dndn−1 . . . d1d0)b
= ±dn × bn + dn−1 × bn−1 + · · ·+ d1 × b1 + d0 × b0,

com 0 ≤ di < b, i = 0, 1, . . . , n, dn ̸= 0 e em que as operações no segundo membro
são efetuadas na base 10.

• Mudança da base b para a base 10:

É imediata, como podemos ver no seguinte exemplo em que se passa da base 2
para a base 10.

Exemplo 2 (10110)2 = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 0× 20 = 22. □

• Mudança da base 10 para a base b:
Sendo b ≥ 2,

N

b
= ±dn × bn−1 + dn−1 × bn−2 + · · ·+ d1︸ ︷︷ ︸

Quociente

+

Resto︷︸︸︷
d0
b
,

i.e., o digito de menor ordem, d0 na representação de N na base b, é o resto da
divisão de N por b. Dividindo o quociente da divisão de N por b, novamente por
b, obtemos o dígito d1 que será o resto daí resultante, e assim sucessivamente,
até efectuarmos a n-ésima divisão cujo quociente é dn.

Por exemplo, se quisermos converter o número 22 na base 10 para uma base 2,
temos então:

Erros 11



Figura 1.2: Cálculo numérico de sin(π).

Problema de propagação de erros: Se tivermos um valor x̄ que aproxima x , ao calcu-
larmos a imagem por uma função f , vamos obter um valor aproximado f (x̄) diferente
de f (x). De que forma o erro é propagado ao efectuarmos o cálculo de uma
função (ou operação) f num valor aproximado de x , x̄?

𝑥 ҧ𝑥 𝑥 ҧ𝑥

𝑔(𝑥)𝑓(𝑥)

𝑦

ത𝑦

𝑥 ҧ𝑥 𝑥 ҧ𝑥

𝑔(𝑥)𝑓(𝑥)

𝑦
ത𝑦

𝑦
ത𝑦

𝑦
ത𝑦

∆ത𝑦

∆ത𝑦

∆ത𝑦∆ത𝑦

∆ ҧ𝑥 ∆ ҧ𝑥

∆ ҧ𝑥 ∆ ҧ𝑥

Figura 1.3: Propagação do erro. De cima para baixo conseguimos ver a influência do
∆x̄ (ao usar o valor aproximado x̄ em vez de x) no erro final (∆ȳ) obtido depois de
fazermos a operação f (x) (ou g(x)). Da esquerda para a direita conseguimos ver a
influência da operação (f (x) ou g(x)) no erro ∆ȳ . ∆ȳ depende de ∆x̄ e da derivada
(taxa de variação) da função.

Vamos começar por ver um exemplo. Na Figura 1.3 estão ilustradas diferentes
funções, que representam diferentes operações. Por exemplo, podemos ter funções
como f (x) = x2 ou f (x) = ex , etc. Na função y = f (x) = x2, temos então uma
multiplicação de x por si próprio. Se em vez de usarmos o valor exato x usarmos um
valor aproximado x̄ , a operação ȳ = f (x̄) = x̄2, vai fornecer um resultado com erro,
que resulta da multiplicação de valores aproximados (multiplicação de x̄ por si próprio).
O erro obtido depois de fazermos a operação com valores aproximados é designado por
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Teorema (Bolzano)
O teorema de Bolzano-Cauchy, também conhecido como Teorema do Valor Inter-
mediário, é um teorema de grande importância na determinação de zeros, de certas
funções reais de uma variável real. Foi primeiramente enunciado em 1817 por Bernard
Bolzano (1781-1848), um sacerdote, matemático e filósofo de Praga. Às vezes é
também associado a Augustin Louis Cauchy (1789-1857), matemático e físico fran-
cês, que foi discípulo de matemáticos como Pierre Simon Laplace e Joseph Louis de
Lagrange.
O teorema afirma que se f (x) é uma função contínua num intervalo fechado [a, b],
e k é um número real entre f (a) e f (b), então existe pelo menos um valor real c no
intervalo aberto (a, b) tal que f (c) = k (ver Figura 2.2).

Corolário (Teorema de Bolzano)
Seja f (x) uma função contínua num intervalo fechado [a, b] e f (a) e f (b) com sinais
contrários (f (a)f (b) < 0), então existe pelo menos um valor real c pertencente ao
intervalo aberto (a, b) tal que a f (c) = 0 (ver Figura 2.2).

𝑎

𝑓(𝑥)

𝑓(𝑎)

𝑓(𝑏)

𝑏𝑐

𝑘

𝑎

𝑓(𝑥)

𝑓(𝑎)

𝑓(𝑏)

𝑏

Figura 2.2: Ilustração do Teorema de Bolzano (esquerda) e do seu corolário (direita),
onde podemos ver 3 zeros da função (o corolário garante que temos pelo menos 1 zero).

Verifiquemos, p.e., que sendo f (x) = ex − 3x , existe um único x∗1 ∈ [0, 1] tal que
f (x∗1 ) = 0.

• Note-se que f é contínua em R e portanto contínua no intervalo [0, 1]. Como
f (0) = 1 > 0 e f (1) = e−3 < 0, o Teorema de Bolzano garante-nos a existência
de pelo menos um zero de f no intervalo [0, 1];

• Uma vez que f ′(x) = ex − 3, então para todo o x ∈ [0, 1], temos (por f ′(x) ser
monótona crescente) e0 − 3 ≤ f ′(x) ≤ e − 3, ou seja, f ′(x) < 0, ∀x ∈ [0, 1].
Assim sendo, f é decrescente em [0, 1] e, como tal, nesse intervalo não pode ter
mais do que um zero.

Equações Não Lineares 43



xn+1 = xn − f (xn)
(xn − xn−1)
f (xn)− f (xn−1)

, n = 0, 1, 2, . . . .

Uma ilustração do método da secante é fornecida na Figura 2.5

𝑥−1
𝑥𝑥0

𝑥1
𝑥3

𝑥2 𝑥4

𝑥∗

𝑦

Figura 2.5: Ilustração do método da secante.

Pode provar-se que

|x∗ − xn+1| ≤
1

2

maxx∈[a,b] |f ′′(x)|
minx∈[a,b] |f ′(x)|

|x∗ − xn| |x∗ − xn−1|

e que o método da secante tem convergência supra-linear, não chegando a ser quadrá-
tica.

A ordem de convergência do método da secante é

p = Φ =
1 +
√
5

2
,

o número de ouro.

Exemplo 31 Vamos encontrar uma aproximação da raiz de f (x) = x2 − 2 = 0, com
x0 = 1, x1 = 2 (usando o método da secante):

x2 = 2− (22 − 2) ·
2− 1

(22 − 2)− (12 − 2) = 2− 2 ·
1

2− (−1) = 1.3333

x3 = 1.3333− (−0.2222) ·
1.3333− 2
−0.2222− 2 = 1.4000

x4 = 1.4000− (−0.0400) ·
1.4000− 1.3333

−0.0400− (−0.2222) = 1.4146

Equações Não Lineares 63



Figura 3.1: Imagem de Manhattan obtida através do Google Maps. Tendo em conta a
disposição dos quarteirões, faz mais sentido calcular distâncias usando a normal L1, em
vez da norma euclidiana, onde teríamos que atravessar paredes.

𝒗 = (5,4)

𝐴

𝐵

Figura 3.2: Interpretação geométrica da norma L1 para o vetor v = (5, 4). Qualquer tra-
jetória de A até B que evite os obstáculos (quadrados) deve percorrer obrigatoriamente
5 unidades na horizontal e 4 na vertical (linha verde), totalizando ∥v∥1 = |5|+ |4| = 9
unidades.

• Para p = 1:
|1|1 + |3|1 + |7|1 = 1 + 3 + 7 = 11

• Para p = 2:

(12 + 32 + 72)
1
2 = (1 + 9 + 49)

1
2 =
√
59 ≈ 7.68

• Para p = 10:
(110 + 310 + 710)

1
10 ≈ 7.00

• Para p = 100:
(1100 + 3100 + 7100)

1
100 ≈ 7.00

92 Exercícios de Métodos Numéricos



▶ ϕi(x) =
(x − x0)(x − x1)...(x − xi−1)(x − xi+1)...(x − xn)
(xi − x0)(xi − x1)...(xi − xi−1)(xi − xi+1)...(xi − xn)

, i = 0, 1, ..., n;

→ Polinómio interpolador de Lagrange.

▶ ϕi(x) = (x − x0)(x − x1)...(x − xi−1), i = 0, 1, ..., n;
→ Polinómio interpolador de Newton.

▶ Na teoria da interpolação polinomial o nº de funções base coincide com o nº de
pontos (pontos de interpolação).
▶ Na aproximação no sentido dos mínimos quadrados, o nº de funções base, m, (que
podem ser polinómios ou outro tipo de funções) é menor ou igual ao nº de pontos, n,
(m ≤ n).

g(𝑥)

𝑥

(𝑥0, 𝑦0)

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

Figura 4.2: Ajuste de uma função a dados discretos.

Dados n+1 pontos (x0, y0), (x1, y1), . . . , (xn, yn), o método dos mínimos quadrados
consiste na determinação de uma função

g(x) = α0ϕ0(x) + α1ϕ1(x) + . . .+ αmϕm(x)

tal que a quantidade (erro)√√√√ m∑
i=0

(yi − g(xi))2 (yi − g(xi))⇝ resíduos)

é mínima (Figura 4.2).
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Resolvendo o sistema obtemos: a = 0.016691560866, b = −0.817886482449143
e c = 12.747908887223467. (A confirmar pelos alunos)
Este ajuste é feito com um erro 0.328113852988224.(A confirmar pelos alu-
nos)
Pela comparação dos erros podemos afirmar que a parábola se ajusta melhor
(tem um erro menor) aos pontos do que a reta.

Resolução 2:
Utlizando a forma matricial, a matriz A a utilizar seria

A =

 225 196 144 196 144 121 121 100 144 169

15 14 12 14 12 11 11 10 12 13

1 1 1 1 1 1 1 1 1 1


e o processo de cálculo análogo ao anterior: AAT = AY .
Para terem uma ideia apresenta-se o gráfico do ajuste pelo polinómio de grau
2 e depois a sobreposição dos dois graficos.

20. Determine a recta que melhor se ajusta, no sentido dos mínimos quadrados, à
função dada pela seguinte tabela:

x -1 0 1 2
f (x) 1.2 -1.5 1.8 2.3

21. Determine a parábola g (x) = ax2 + b que melhor se ajusta, no sentido dos
mínimos quadrados, aos dados

x -1 0 1
f (x) 3.1 0.9 2.9

22. Considere a seguinte tabela:
x 1 3 5
f (x) -1.5 1 2
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4.5 Códigos em Python

Método dos mínimos quadrados usando as funções x2 e sin(x).

import numpy as np
import matplotlib.pyplot as plt

def least_squares(x, y):
"""
x e y sao os pontos a ajustar
"""

# Definir a função basis localmente
def basis(t):

"""
Vetor coluna com as funcoes base: [x^2; sin(x)]
"""
return np.array([t**2, np.sin(t)])

npontos = len(x) # número de pontos
nbf = len(basis(x[0])) # número de funcoes base

A = np.zeros((nbf , nbf))
B = np.zeros(nbf)

# Construir a matriz A e vetor B do sistema normal
for j in range(nbf):

for k in range(nbf):
for i in range(npontos):

be_val = basis(x[i])
A[j,k] = A[j,k] + be_val[j] * be_val[k]

for i in range(npontos):
be_val = basis(x[i])
B[j] = B[j] + be_val[j] * y[i]

print(’Matriz A:’)
print(A)
print(’Vetor B:’)
print(B)

sol = np.linalg.inv(A) @ B

print(’\nCoeficientes encontrados:’)
print(f’a = {sol [0]:.6f}’)
print(f’b = {sol [1]:.6f}’)

# Função de ajuste
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Exemplo 54 Vamos calcular o valor do integral definido:

I(f ) =

∫ 1
0

x2 dx.

O valor exato é:

∫ 1
0

x2 dx =
1

3
.

Aplicando a Regra do Trapézio para estimar o valor do integral, obtemos:

I(f ) ≈
1

2
(f (0) + f (1)) =

1

2
(0 + 1) =

1

2
.

Na figura seguinte podemos ver a vermelho a linha usada para a aproximação pela
regra do trapézio (neste caso um trapézio degenerado que resulta num triângulo) e a
azul a representação da função f (x) = x2 e a sua respetiva área para x ∈ [0, 1].

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

f (x)

□

5.3 Regra de Simpson

Considere-se agora n = 2. Procedendo de forma semelhante ao caso n = 1, serão

usados 3 pontos, x0 = a, x1 = c =
a + b

2
e x2 = b, como abcissas de interpolação (tal

como ilustrado na figura seguinte).
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∫ 4
0

ex dx =

∫ 1
0

ex dx +

∫ 2
1

ex dx +

∫ 3
2

ex dx +

∫ 4
3

ex dx

≃
1

6
(e0 + 4e1/2 + e) +

1

6
(e + 4e3/2 + e2)

+
1

6
(e2 + 4e5/2 + e3) +

1

6
(e3 + 4e7/2 + e4)

≃
1

3
(e0 + 4e1/2 + 2e + 4e3/2 + 2e2 + 4e5/2 + 2e3 + 4e7/2 + e4)

≃ 53.61622
Erro = 0.01807.

□

Este exemplo sugere que podemos considerar uma partição do intervalo [a, b], e usar
essa partição para obter aproximações mais precisas do integral em questão. Para o
caso da Regra do Trapézio vamos então obter a Regra do Trapézio Composta - TC,
tal como ilustrada na figura seguinte.

x

f (x)

x0 x1 x2 x3 x4

y = f (x)

Aproximação por trapézios (Regra Composta)

Neste caso são usado 4 trapézios, e a área de cada trapézio será somada de modo a
obter uma melhor aproximação (quando comparada com a Regra do Trapézio Simples)
do integral ∫ x4

x0

f (x) dx.
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Regra de Simpson Composta: Seja f definida em [a, b], onde é considerada a
partição uniforme a ≡ x0 < x1 < · · · < xn ≡ b, com h = (b − a)/n e n = 2m. Se
f ∈ C4([a, b]), então existe ξ ∈ [a, b] tal que

I(f ) =
h

3

(
f (a) + 4

m∑
i=1

f (x2i−1) + 2

m−1∑
i=1

f (x2i) + f (b)

)
−
h4

180
(b − a)f (4)(ξ)

O erro cometido na aproximação

I(f ) ≈
h

3

(
f (a) + 4

m∑
i=1

f (x2i−1) + 2

m−1∑
i=1

f (x2i) + f (b)

)

é dado por:

ESC(f ) = −
h4

180
(b − a)f (4)(ξ), para algum ξ ∈ (a, b).

SC significa Simpson Composta.

Dem.:

I(f ) =

∫ b
a

f (x) dx =

m∑
i=1

∫ x2i
x2i−2

f (x) dx

Aplicando a regra de Simpson a cada subintervalo:

I(f ) =

m∑
i=1

h

3
(f (x2i−2) + 4f (x2i−1) + f (x2i))−

h5

90

m∑
i=1

f (4)(ξi),

ξi ∈ (x2i−2, x2i), i = 1, . . . , m

Obtemos então:

I(f ) ≃
h

3

(
f (a) + 2

m∑
i=2

f (x2i−2) + 4

m∑
i=1

f (x2i−1) + f (b)

)

ESS(f ) = −
h5

90

m∑
i=1

f (4)(ξi)

Como:
min
x∈[a,b]

f (4)(x) ≤ f (4)(ξi) ≤ max
x∈[a,b]

f (4)(x)

então:

min
x∈[a,b]

f (4)(x) ≤
1

m

m∑
i=1

f (4)(ξi) ≤ max
x∈[a,b]

f (4)(x)
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• É também esperado que N e M dependam do intervalo de tempo ∆t. Ou seja,
quanto maior for o intervalo de tempo, maior será o número de nascimentos e
mortes.

Esta dupla dependência de N e M em relação a P (t) e ∆t pode então ser expressa
como:

N = αP (t)∆t, M = βP (t)∆t. (6.4)

Consequentemente, a variação da população ao longo do intervalo de tempo [t, t+
∆t] é dada por P (t + ∆t)− P (t) = N −M, ou seja:

P (t + ∆t)− P (t) = (α− β)P (t)∆t. (6.5)

Dividindo ambos os lados por ∆t, obtemos a seguinte equação:

P (t + ∆t)− P (t)
∆t

= (α− β)P (t). (6.6)

P(t+∆𝑡)

P(t)

𝑃 𝑡+∆𝑡 −𝑃(𝑡)

∆𝑡

𝑑𝑃 𝑡 )

𝑑𝑡

t t+∆𝑡

declive=

declive=

Figura 6.1: Aproximação da derivada.

Tomando o limite quando ∆t → 0, obtemos a seguinte equação diferencial:

dP

dt
= (α− β)P (t), (6.7)

que é a conhecida equação Malthusiana, descrevendo a variação esperada (modelo)
do crescimento populacional (α > β) ou declínio (α < β). Frequentemente, é usada a
notação P ′(t) em vez de dPdt .

Seja k = α − β, então cekt com c ∈ R uma constante arbitrária, é a solução do
nosso problema:

dP

dt
= kP (t), (6.8)
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Como y é a solução de (6.12), então:

y ′(x) = f (x, y(x))

y ′′(x) =
d

dx
f (x, y(x)) = fx(x, y(x)) + fy (x, y(x))f (x, y(x))

...

y (p)(x) = f (p−1)(x, y(x))

onde f (k) denota a k-ésima derivada total de f em relação a x .
Substituindo em (6.20):

y(xi+1) = y(xi) + hf (xi , y(xi)) +
h2

2
f ′(xi , y(xi)) + · · ·+

hp

p!
f (p−1)(xi , y(xi))

+
hp+1

(p + 1)!
f (p)(ξi , y(ξi)), ξ ∈ (xi , xi+1) (6.21)

Se em (6.21) substituirmos y(xi) por yi e ignorarmos o último termo, obtemos:

yi+1 = yi + hf (xi , yi) +
h2

2
f ′(xi , yi) + · · ·+

hp

p!
f (p−1)(xi , yi),

i = 0, 1, . . . , n − 1 (6.22)

Em (6.22), yi+1 depende apenas de yi , razão pela qual este é chamado um método
de passo simples.

Com p = 2, o método (6.22) escreve-se:

yi+1 = yi + hf (xi , yi) +
h2

2

fx(xi , yi) + f (xi , yi)︸ ︷︷ ︸
y ′

fy (xi , yi)

 ,
i = 0, 1, . . . , n − 1

y0 = α (6.23)

Método de Taylor de ordem 2

Consideremos agora a expansão em série de Taylor em torno de xi+1 :

y(xi) = y(xi+1)− hy ′(xi+1) +
h2

2
y ′′(xi+1) + · · ·+ (−1)p

hp

p!
y ′(p)(xi+1)

+(−1)p+1
hp+1

(p + 1)!
y ′(p+1)(ξi), ξ ∈ (xi , xi+1) (6.24)
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