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Prefacio

Os Métodos Numéricos desempenham um papel central ndo apenas na Engenharia e
Matematica, mas também em diversas areas das Ciéncias, constituindo uma ferramenta
essencial para a modelacdo e resolucdo de problemas que ndo admitem solucdo analitica
exata.

Este livro apresenta uma abordagem sistematica e integrada a Analise Numérica,
combinando o enquadramento tedrico com a aplicacdo pratica dos principais métodos.
A obra encontra-se estruturada de modo progressivo, iniciando-se com o estudo dos
erros e da sua propagacao, sequido da andlise de equagdes nao lineares, sistemas de
equacoes lineares, interpolacdo polinomial, ajuste de funcdes a dados experimentais
através do método dos minimos quadrados, integracdo numérica e, por fim, a resolucdo
de problemas de valor inicial em equacdes diferenciais ordinarias.

A elaborac3do deste manual resulta da experiéncia docente dos autores no ensino dos
métodos numéricos, durante a qual foi possivel identificar uma crescente necessidade
de materiais de apoio que articulem teoria, pratica e validacdo de resultados. Com
frequéncia, os estudantes manifestam inseguranca na aplicacdo dos conceitos adquiri-
dos, sobretudo na resolucdo de exercicios. Assim, o presente livro visa colmatar essa
lacuna, oferecendo ndo apenas solucdes comentadas, mas também uma anaélise critica
das condicdes de aplicabilidade e das limitacdes de cada método.

A obra introduz ainda o Matlab e Python como ferramenta de apoio ao calculo e a
experimentacdo numérica, incentivando a utilizacdo de software cientifico no processo
de aprendizagem e na resolucdo de problemas matematicos.

Com o objetivo de tornar o livro acessivel e auténomo, cada capitulo inicia-se com um
resumo dos conceitos fundamentais necessarios a compreensido dos métodos abordados
e a resolucdo dos exercicios. Esta estrutura procura equilibrar o rigor matematico com a
vertente aplicada, tornando o texto Gtil tanto para estudantes de cursos de Engenharia
e Ciéncias como para docentes e profissionais que pretendam rever e consolidar os
fundamentos dos métodos numéricos.
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Médulo 1

Erros

Neste capitulo é apresentado um resumo sobre a teoria de erros. Os conceitos
aqui apresentados s3o essenciais para a resolucdo (e compreensdo das resolugdes) dos
exercicios sugeridos.

1.1 Tipos de Erros

Quando recorremos a uma calculadora ou a um computador para resolver numerica-
mente um dado problema matematico, dois tipos de erro podem surgir:

e Erros de arredondamento: as maquinas, de capacidade limitada, ndo conseguem
representar todos os nimeros reais (é impossivel representar infinitas casas deci-
mais);

e Erros de truncatura: surgem sempre que se substitui um problema continuo por
um discreto, ou quando se substitui um processo de calculo com um ndmero
infinito de operacdes, por outro com um nimero finito.

o Suponha que queremos aproximar a funcdo e* usando a expansdo de Taylor
em torno de x = 0:

x2  x3 Xt
e =ltx+ gyt (1.1)
Se truncarmos a série apos o termo de segunda ordem, ficamos com:

2

1+x+% (1.2)

O erro de truncatura é a soma dos termos que foram ignorados:
3 4

Erro = %—F + ... (1.3)

Erros 9



1.2 Representacido de Nimeros Inteiros e Reais

1.2.1 Representacao de nimeros inteiros:

Um inteiro N # 0 com n+ 1 digitos é representado na base decimal, univocamente,
por

N = +(dody1... dido)q
= dyx10"+dp_1 x 10" 1+ -+ d; x 10* + dp x 10°,

sendo d; um inteiro tal que 0 < d; < 10,1 =0,1,..., n, d, #0.
Exemplo 1 483 = 4 x 10% +8 x 10! + 3 x 10° = (483)1,. O

Se um ndmero inteiro, N # 0 esta representado numa outra base b, b > 2 que ndo
a decimal, entdo:

N = =£(dydy_1...d1do),
+d, X b+ dp_y x "L 4 dy x bt 4 do x b,

com0<di<b i=0,1,..., n, d, # 0 e em que as operacdes no segundo membro
sdo efetuadas na base 10.

e Mudanca da base b para a base 10:

E imediata, como podemos ver no seguinte exemplo em que se passa da base 2
para a base 10.

Exemplo 2 (10110), =1 x2*+0x23+1x22+1x 21 +0x 20 =22, O

e Mudanca da base 10 para a base b:
Sendo b > 2,

Resto
N
do

b

N
E:idnxb"*wdn_lxb"*2+-~-+d1+

Quociente

i.e., o digito de menor ordem, dy na representacdo de N na base b, é o resto da
divisdo de N por b. Dividindo o quociente da divisdo de N por b, novamente por
b, obtemos o digito d; que serd o resto dai resultante, e assim sucessivamente,
até efectuarmos a n-ésima divisdo cujo quociente é d,,.

Por exemplo, se quisermos converter o nimero 22 na base 10 para uma base 2,
temos ent3o:

Erros 11



WOLFRAM LANGUAGE AND MATHEMATICA

Alpha

-2246467991473532**-16

Figura 1.2: Calculo numérico de sin().

Problema de propagacido de erros: Se tivermos um valor X que aproxima x, ao calcu-
larmos a imagem por uma fungdo f, vamos obter um valor aproximado f(X) diferente
de f(x). De que forma o erro é propagado ao efectuarmos o calculo de uma
funcdo (ou operacdo) f num valor aproximado de x, X7

f(x) g(x)
y
Ay
ay{)
y y
X X x x
x A
Ax Ax
f(x) g(x)
o[y .
Ay[Y Ay <2 feas
o ;
x X x X
Ax Ax

Figura 1.3: Propagacdo do erro. De cima para baixo conseguimos ver a influéncia do
AX (ao usar o valor aproximado X em vez de x) no erro final (Ay) obtido depois de
fazermos a operagdo f(x) (ou g(x)). Da esquerda para a direita conseguimos ver a
influéncia da operagdo (f(x) ou g(x)) no erro Ay. Ay depende de Ax e da derivada
(taxa de variagcdo) da funcéo.

Vamos comecar por ver um exemplo. Na Figura 1.3 estdo ilustradas diferentes
funcdes, que representam diferentes operacGes. Por exemplo, podemos ter funcoes
como f(x) = x? ou f(x) = e, etc. Na funcio y = f(x) = x?, temos entdo uma
multiplicacdo de x por si proprio. Se em vez de usarmos o valor exato x usarmos um
valor aproximado X, a operacdo ¥ = f(X) = X, vai fornecer um resultado com erro,
que resulta da multiplicacdo de valores aproximados (multiplicagdo de X por si préprio).
O erro obtido depois de fazermos a operacdo com valores aproximados é designado por

26 Exercicios de Métodos Numéricos



Teorema (Bolzano)

O teorema de Bolzano-Cauchy, também conhecido como Teorema do Valor Inter-
mediario, é um teorema de grande importancia na determinacdo de zeros, de certas
funcées reais de uma variavel real. Foi primeiramente enunciado em 1817 por Bernard
Bolzano (1781-1848), um sacerdote, matematico e filésofo de Praga. As vezes é
também associado a Augustin Louis Cauchy (1789-1857), matematico e fisico fran-
cés, que foi discipulo de matematicos como Pierre Simon Laplace e Joseph Louis de
Lagrange.

O teorema afirma que se f(x) é uma fung¢do continua num intervalo fechado [a, b],
e k € um namero real entre f(a) e f(b), entdo existe pelo menos um valor real ¢ no
intervalo aberto (a, b) tal que f(c) = k (ver Figura 2.2).

Corolario (Teorema de Bolzano)

Seja f(x) uma fungdo continua num intervalo fechado [a, b] e f(a) e f(b) com sinais
contrarios (f(a)f(b) < 0), entdo existe pelo menos um valor real ¢ pertencente ao
intervalo aberto (a, b) tal que a f(c) = 0 (ver Figura 2.2).

e 160
0} : T
k-
f@
| | o/ \
“ ¢ ’ fa@

Figura 2.2: llustragdo do Teorema de Bolzano (esquerda) e do seu corolério (direita),
onde podemos ver 3 zeros da fun¢do (o corolario garante que temos pelo menos 1 zero).

Verifiquemos, p.e., que sendo f(x) = e¥ — 3x, existe um Gnico xj € [0, 1] tal que
f(x;)=0.

e Note-se que f é continua em R e portanto continua no intervalo [0,1]. Como
f(0)=1>0ef(l)=e—3<0, o Teorema de Bolzano garante-nos a existéncia
de pelo menos um zero de f no intervalo [0, 1];

e Uma vez que f'(x) = e — 3, entdo para todo o x € [0, 1], temos (por f'(x) ser
mondtona crescente) e® — 3 < f/(x) < e — 3, ou seja, f'(x) < 0, Vx € [0, 1].
Assim sendo, f é decrescente em [0, 1] e, como tal, nesse intervalo ndo pode ter
mais do que um zero.

Equacdes N3o Lineares 43



(Xn — Xp—1 )

——, n=20,1,2,....
f(Xn) - f(xn—l)

Xn+1 = Xn — f(Xn)

Uma ilustragdo do método da secante é fornecida na Figura 2.5

y

Figura 2.5: llustracao do método da secante.

Pode provar-se que

1 maxyefa,p | (%)
2 minxe[a,b] |f/(X)‘

X" = X | < X" = Xl X" = Xp-1]
e que o método da secante tem convergéncia supra-linear, ndo chegando a ser quadra-
tica.

A ordem de convergéncia do método da secante é

1++5

= = s
P 2

o nimero de ouro.

Exemplo 31 Vamos encontrar uma aproximacdo da raiz de f(x) = x> —2 = 0, com
Xo =1, xy = 2 (usando o método da secante):

2-1 1
=2-_(22-2). =2_-2.—— =1,
X2 ( ) 22— (2= sy — 13333
1.3333 -2
X3 = 1.3333 — (—0.2222) - o35 5 1.4000
1.4000 — 1.3333
x4 = 1.4000 — (—0.0400) - = 1.4146

—0.0400 — (—0.2222)

Equacdes N3o Lineares 63
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Figura 3.1: Imagem de Manhattan obtida através do Google Maps. Tendo em conta a
disposicdo dos quarteirdes, faz mais sentido calcular distancias usando a normal L1, em
vez da norma euclidiana, onde teriamos que atravessar paredes.

<
Il

(G50

A

Figura 3.2: Interpretagdo geométrica da norma L1 para o vetor v = (5, 4). Qualquer tra-
jetdria de A até B que evite os obstaculos (quadrados) deve percorrer obrigatoriamente
5 unidades na horizontal e 4 na vertical (linha verde), totalizando |lv||; = |5] + |4] = 9

unidades.

e Parap=1:
1P+ B+ ]7P=1+3+7=11
e Para p=2:
(12432 +72)2 = (1 + 9+ 49)2 = /50 ~ 7.68
e Para p =10:
(110 4 319 4 710)3%5 ~ 7.00
e Para p = 100:

(1100 4 3100 4 7100)%0 ~ 7.00

92 Exercicios de Métodos Numéricos



(X = X0) (X = x1)-..(x = Xi=1) (X = Xix1)...(X = Xn)
Xi = x0)(Xi = x1)...(x; = Xi—1)(Xi = Xix1)...(Xi — Xn)’

— Polinémio interpolador de Lagrange.

i=0,1,...,m

> (pi(X) = (

> wi(x)=(x—x)(x—x1)...(x = x—1), i=0,1,....,m
—> Polinémio interpolador de Newton.

» Na teoria da interpolacdo polinomial o n® de funcbes base coincide com o n2 de
pontos (pontos de interpolagdo).

» Na aproximacdo no sentido dos minimos quadrados, o n2 de fungdes base, m, (que
podem ser polinémios ou outro tipo de fungdes) € menor ou igual ao n? de pontos, n,
(m < n).

9(x) |

(x4, Y42
(x3,¥3) -

(x.lv}’l) o

(x2,¥2)

(x0,¥0)

Figura 4.2: Ajuste de uma fung¢do a dados discretos.

Dados n+1 pontos (xo, o), (X1, 1), ..., (Xn, ¥n), 0 método dos minimos quadrados
consiste na determinacdo de uma funcdo

9(x) = appo(x) + a101(x) + ... + am@m(x)

tal que a quantidade (erro)

D =90 (v —9(x)) ~ residuos)
=0

é minima (Figura 4.2).

Aproximacao de Funcdes 157



Resolvendo o sistema obtemos: a = 0.016691560866, b = —0.817886482449143
e ¢ = 12.747908887223467. (A confirmar pelos alunos)

Este ajuste é feito com um erro 0.328113852988224.(A confirmar pelos alu-
nos)

Pela comparacdo dos erros podemos afirmar que a parabola se ajusta melhor
(tem um erro menor) aos pontos do que a reta.

Resolucdo 2:
Utlizando a forma matricial, a matriz A a utilizar seria

225 196 144 196 144 121 121 100 144 169
A= 15 14 12 14 12 11 11 10 12 13
1 1 1 1 1 1 1 1 1 1

e o processo de calculo analogo ao anterior: AAT = AY.
Para terem uma ideia apresenta-se o grafico do ajuste pelo polinémio de grau
2 e depois a sobreposicdo dos dois graficos.

6.5 6.5

09

4.5 . 4.5

10 11 12 13 14 15 10 11 12 13 14 15

20. Determine a recta que melhor se ajusta, no sentido dos minimos quadrados, a
funcdo dada pela seguinte tabela:

x | 1] 0 [1]2
f(x) |12 |-15]| 18| 23

21. Determine a pardbola g(x) = ax? + b que melhor se ajusta, no sentido dos
minimos quadrados, aos dados

F(x) [31]09]29

22. Considere a seguinte tabela: Fo) 15 112

Aproximacao de Funcdes 185



4.5 Codigos em Python

Método dos minimos quadrados usando as fun¢des x2 e sin(x).

import numpy as np
import matplotlib.pyplot as plt

def least_squares(x, y):

nnn

X e y sao os pontos a ajustar

nnn

# Definir a funcgdo basis localmente
def basis(t):

nnn

Vetor coluna com as funcoes base: [x72; sin(x)]

nnn

return np.array ([t**2, np.sin(t)])

npontos = len(x) # nimero de pontos
nbf = len(basis(x[0])) # nimero de funcoes base

A = np.zeros ((nbf, nbf))
B np.zeros (nbf)

# Construir a matriz A e vetor B do sistema normal
for j in range (nbf):
for k in range(nbf):
for i in range (npontos):
be_val = basis(x[i])
Alj,x] = A[j,k] + be_vall[j]l * be_val[k]

for i in range (npontos):
be_val = basis(x[i])
B[j] = B[j] + be_vall[j]l * yl[i]

print (’Matriz A:7)
print (A)
print (’Vetor B:’)
print (B)

sol = np.linalg.inv(A) @ B
print (’\nCoeficientes encontrados:’)
print(f’a = {sol[0]:.6f}7)

print (f’b = {sol[1]:.6f}7)

# Funcdo de ajuste

190 Exercicios de Métodos Numéricos




Exemplo 54 Vamos calcular o valor do integral definido:

I(f) = /le2 dx.

O valor exato é:

1
1

/ x2dx = =.
0 3

Aplicando a Regra do Trapézio para estimar o valor do integral, obtemos:

HF) = 5 (FO)+ F() = 5 (0+1) = 5.

Na figura seguinte podemos ver a vermelho a linha usada para a aproximacao pela
regra do trapézio (neste caso um trapézio degenerado que resulta num tridngulo) e a
azul a representacdo da funcdo f(x) = x> e a sua respetiva drea para x € [0, 1].

5.3 Regra de Simpson

Considere-se agora n = 2. Procedendo de forma semelhante ao caso n = 1, serdo

a+b

usados 3 pontos, xp = a, x; = C = e x, = b, como abcissas de interpolacdo (tal

como ilustrado na figura seguinte).

Integracdo Numérica 201



4 1 2 3 4
/exdx:/ exdx—i-/ exdx—i—/ exdx—i—/ e~ dx

0 0 1 2 3

1

(eo+4el/2+e)+6(e+4e3/2+62)

1 1
6(e2+4e5/2+e3)+6(e3+4e7/2+e4)

1
:g(e°+4el/2+26+4e3/2+262+4e5/2+2e3+4e7/2+e4)

~ 53.61622
Erro = 0.01807.

Este exemplo sugere que podemos considerar uma particdo do intervalo [a, b], e usar
essa particdo para obter aproximagdes mais precisas do integral em questdo. Para o
caso da Regra do Trapézio vamos entdo obter a Regra do Trapézio Composta - TC,

tal como ilustrada na figura seguinte.

f(x)

y =f(x)

|

|

|

|
|
I
|
|
|
|
1

X0 X1 X2 X3 X4

Aproximacdo por trapézios (Regra Composta)

Neste caso sdo usado 4 trapézios, e a area de cada trapézio serd somada de modo a
obter uma melhor aproximagdo (quando comparada com a Regra do Trapézio Simples)

/:4 f(x) dx.

do integral
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Regra de Simpson Composta: Seja f definida em [a, b], onde é considerada a
particdo uniforme a = xg < xy < -+ < x, = b, com h=(b—a)/ne n=2m. Se
f € C*([a, b]), entdo existe € € [a, b] tal que

m m—1 4
=1 (f(a) #4320 70ore0) +2 3 ) + f<b>> ~ S5 (b- )
O erro cometido na aproximacado
m m—1
I(f) ~ g (f(a) +4) floic1) +2) ) FO) + f(b))
i=1 i=1

é dado por:

Esc(f) = —%:O(b — a)f(4)(£), para algum & € (a, b).

SC significa Simpson Composta.

Dem.:

/(f):/a X)dXZ/XM

Aplicando a regra de Simpson a cada subintervalo:

m

I(f) = Zf(f()@, 2) +4f (xoi1) + F(x2i)) — 7Zf<4>(g)
&€ (ia, X)), 1=1,..., m

Obtemos entdo:

w\:

I(f) ~ < +2Zf(><2/ +4Z f(xoiz1) + f(b)>

i=1

h &
Ess(f) = =55 2 1(&)
i=1

Como:

in f® < F4
Iy 100 ) < e, rO00

entao:

min f®(x) <
x€la,b]

Zﬂ“(g) < max f®(x)

o1 x€la,b]

S\H
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o E também esperado que N e M dependam do intervalo de tempo At. Ou seja,
quanto maior for o intervalo de tempo, maior serd o niumero de nascimentos e
mortes.

Esta dupla dependéncia de N e M em relacdo a P(t) e At pode entdo ser expressa
como:

N = aP(t)At, M = BP(t)At. (6.4)

Consequentemente, a variacdo da populacdo ao longo do intervalo de tempo [t, t+
At] é dada por P(t + At) — P(t) = N — M, ou seja:

P(t+ At) — P(t) = (o« — B)P(t)At. (6.5)
Dividindo ambos os lados por At, obtemos a seguinte equacio:

P(t+ At) — P(t)
At B

(= PB)P(2). (6.6)

P(t+At)—P(t)
At

declive=

P(t+At)

dp(t))
dt

declive=

O :

t tFAL

Figura 6.1: Aproximacao da derivada.
Tomando o limite quando At — 0, obtemos a seguinte equacdo diferencial:

dP
= (@=B)P(), (6.7)

que é a conhecida equagdo Malthusiana, descrevendo a variacdo esperada (modelo)
do crescimento populacional (a > 3) ou declinio (o < 3). Frequentemente, é usada a
notacdo P'(t) em vez de %.

Seja k = o — 3, entdo ce
nosso problema:

kt com ¢ € R uma constante arbitraria, é a solucdo do

dpP
—7 = kP(t), (6.8)
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Como y é a solugdo de (6.12), entdo:

Y'(x) = flxy(x)
y'x) = d%f‘(XJ(X)) = (¥ (x)) + 1, (%, y () (x, ¥(x))
yP(x) FP~D (x, y(x))

onde %) denota a k-ésima derivada total de f em relacio a x.
Substituindo em (6.20):

2 P
y(xiv1) = y(xi)+ hf(x, y(x)) + %f'(XiJ/(X/)) ot %f("‘l)(x,-.y(x,'))
pp+1
+mf(p)($nﬂ£i)), € € (xi, Xi41) (6.21)

Se em (6.21) substituirmos y(x;) por y; e ignorarmos o altimo termo, obtemos:

n hP
Yisp = yf+hf(></.y/)+Ef(xf,y,-)+-~+ﬁ

i=01,...,n—1 (6.22)

FE= (g, i),

Em (6.22), y;+1 depende apenas de y;, razdo pela qual este é chamado um método
de passo simples.

Com p =2, o método (6.22) escreve-se:

Método de Taylor de ordem 2

h2
Yitr = Yi+hf(x,yi)+ > f (i yi) + F(xi vi) £,(xi, vi)
—_——
y/
1=0,1,..., n—1
Y = o (6.23)

Consideremos agora a expansao em série de Taylor em torno de X1 :

h? hP
y(xi) = y(xip1) = hy' (xip1) + EJ/H(X:‘H) +-F (—1)pay/(p)(xi+1)
11
+(—1)p+1m/(p+l)(§i), € € (xi, Xit1) (6.24)
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