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INTRODUCTION 

 

 

 
 

 

 

 

 

 

This book is designed to assist undergraduate students in developing a good 

background in Engineering Mathematics. It follows the structure and topics typically 

found in Mathematical Analysis courses for engineers. It may also serve to graduate 

students, for they often look for references when they need to apply their 

mathematical knowledge. For instructors, it provides a practical teaching resource, 

offering a concise synthesis of materials and exercises suitable for a one-semester 

course. 

Problems of Advanced Engineering Mathematics is a natural continuation of the 

author’s two previous Portuguese editions, Problemas de Equações Diferenciais 

Ordinárias e Transformadas de Laplace and Problemas de Análise Matemática para 

Engenharia. In this volume, the author presents a revised and unified version of the 

two books, including the most important chapters and a few updates. The new 

English edition can now be used by international and mobility students and aims to 

reach engineering learners around the world. 

Each chapter includes selected worked examples. Step by step, students can use the 

fundamental skills to solve problems in engineering mathematics. 

Throughout the book, 450 problems are proposed, each accompanied by the correct 

answers so students can check their homework. 

The main topics of fundamental engineering mathematics are covered: differential 

equations in Chapters 1 through 3, Laplace transforms in Chapter 4, line integrals in 

Chapter 5, surface integrals and Gauss’ and Stokes’ theorems in Chapter 6 and 

finally, Chapter 7 focuses on Fourier series and presents the solution of the vibrating 

string equation using the method of separation of variables and Fourier series. 
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CHAPTER 1 

FIRST-ORDER ORDINARY DIFFERENTIAL  

EQUATIONS 

 
 

 

 

 

 

 

In this chapter, first-order differential equations containing the first derivative of the 

function � are studied, which are represented by Equation 1. The independent 

variable is usually �, and so the function ���� is the dependent variable. All 

derivatives are ordinary derivatives of ���� with respect to a single independent 

variable �. 

 ���, �, ��� = 0     (1) 

 

First-order equations are too general and it is not possible to obtain a method to 

solve them all. Throughout the chapter integration processes are established for 

certain types of differential equations. The first equations considered have the 

derivative explicitly given as �� = 
��, ��. Section 1.6 deals with some examples of 

differential equations where ����� is defined implicitly by � = 
��, ���. 

 

1.1 Separable differential equations 

 

A separable differential equation is an equation that takes the form 

 �����′ = 
��� (2) 

 

 Definition: order of a differential equation 

 Order of a differential equation is the order of the highest-order derivative of 

the dependent variable which appears in the equation. 
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the perpendicularity relationship between tangent lines to these curves at the point 

of intersection is given by the equation 

�6� = − "!~� 

Orthogonal trajectories of the family ���, �� are then obtained from the

differential equation 

�∗ ^�, �, − "!�_ = 0  (9) 

and its integration giving �%s4���.

Equation 9 is a first-order differential equation that can be solved using the methods 

for determining the solution of first-order differential equations described 

throughout this chapter. 

Example 1.9 

Determine the equation of the family of curves orthogonal to the one-parameter 

family �6 + �6 = 2P�.

Answer 

The given family is a family of circles with centers on the �-axis and

tangent to the �-axis (Figure 1.1).

 Representation of trajectories Figure 1.1 

y

x
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�6 + !N6 = �
which is a family of ellipses (Figure 1.3). 

 Representation of orthogonal trajectories 

Problems 

Determine the equation of the orthogonal trajectories of the following families of 

curves: 

1.30 � = P��N
, P > 0

1.31 � = P����
1.32 �6 + 2P� = 0,    P > 0
1.33 � = P� 
1.34 �3 + �3 = P3
1.35 �6 + �6 = P�:
1.36 ��� � ���ℎ� = P
1.37 ��6 − 4P�6 = 0
1.38 � = P�#!N
1.39 � = P���
Answers 

1.30 �6 = � − ���
1.31 �6 = �������6��
1.32 2�6 + �6 = �
1.33 �6 + ��6 = �

Figure 1.3 

y

x
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CHAPTER 2

HIGHER-ORDER ORDINARY DIFFERENTIAL 

EQUATIONS 

In this chapter, ordinary differential equations of order � usually represented by

���, �, ��, ��, ⋯ , �
��
 = 0 (1)

are studied. Methods for solving these equations are only a few specific ones, and 

for linear equations a theory is presented. 

2.1 Reducing the order of differential equations 

In some particular cases it is possible to reduce the order of a differential equation 

like Equation 1 obtaining differential equations of lower order that are simpler to 

solve. 

Two cases in which this reduction of order applies are approached next. 

i) The equation does not contain the dependent variable � and some of its

derivatives ��, … �
���� explicitly:

���, �
��, �
����, ⋯ , �
��
 = 0
With a change of variable like 

� = �
��
the order of the equation is reduced in � units by obtaining

���, �, ��, ⋯ , �
����
 = 0
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2.10 � = �� �2� − 06 2� − ��2�� + ��
2.11 . = 4178,   : = 6789��

2.2 Linear differential equations of order F
Linear differential equations of order � are of the type

5G
���
�� + 5�
���
���� + ⋯ + 5���
���� + 5�
��� = �
�� (2) 

with 5G
�� ≠ 0.

This equation is linear in � and its derivatives. The coefficients5G
��, 5�
��, … , 5�
��  and �
�� are continuous functions in a domain of validity.

In the case of �
�� ≡ 0 the equation is said to be the associated homogeneous

equation and is written as 

5G
���
�� + 5�
���
���� + ⋯ + 5���
���� + 5�
��� = 0 (3) 

2.2.1 Solutions of the homogeneous and non-homogeneous equation. 

Main theorems 

Theorem 

If the functions ��, ��, … , �J are 8 particular solutions of Equation 3 then, any

linear combination of these solutions is also a solution of the homogeneous 

equation. 

Theorem 

Consider Equation 2 under the above conditions. If �G is a point of the domain

of 5G
��, 5�
��, … , 5�
��, �
��  and given real values �G, ��, … , ����, then,

there exists one only solution �
�� of Equation 2 such that

�
�G� = �G, ��
�G� = ��, … �
����
�G� = ����.
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CHAPTER 3

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

The formulation of the problem of a physical system´s behavior with � degrees of

freedom, leads to a system of � simultaneous differential equations in which the

independent variable is usually time. 

In this chapter, only linear systems in the dependent variable consisting of �
differential equations involving � unknowns ��, ��, … , �� will be considered

Theorem (existence and uniqueness of the solution) 

If the coefficients 	
��
� of this system and �
�
� are all continuous functions over

an interval  �, if 
�  ∈  � and if ��, ��, … , �� are � arbitrary constants, then there

exists one and only one solution ���
�, ���
�, … , ���
� in � such that ���
�� = ��,���
�� = ��,… , ���
�� = ��.

There is a close relationship between linear differential equations of order � and

linear differential systems of the same order. In fact, it turns out that a linear 

differential equation of order � can always be transformed into a linear system of �
differential equations. 

To check this statement, consider the equation     

���� + 	��
������� + 	��
������� + ⋯ + 	��
�� = ��
� (2) 

⎩⎨
⎧ ��′ = 	���
��� + 	���
��� + ⋯ + 	���
��� + ���
���′ = 	���
��� + 	���
��� + ⋯ + 	���
��� + ���
�⋮��′ = 	���
��� + 	���
��� + ⋯ + 	���
��� + ���
� (1)
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Finally, the particular solution is given by 

Example 3.4 

Solve the following system of differential equations: !��� = 3�� + 30��� = −3�� − 3

Answer 

In matrix form, the system is written as 

B������ C = ? 0 3−3 0@ ?����@ + ? 30−3
@
The associated homogeneous system is first solved. So, by calculating the 

eigenvalues of the coefficient matrix 

E(
 ?0 − 4 3−3 0 − 4@ = F−4 3−3 −4F = 0
it leads to the characteristic equation 

4� + 9 = 0
which has as its roots 

4 = ±3L
Calculating now the eigenvectors, considering the eigenvalue 4 = 3L. The

equation to be solved is 

? 0 3−3 0@ ?H�H�@ = 3L ?H�H�@
which is equivalent to the system 

! 3H� = 3LH�−3H� = 3LH�

-k�
� = l�
� p l�� �
�i�
�E
 (13)
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CHAPTER 4

LAPLACE TRANSFORM 

The Laplace transform is a particularly useful tool in solving linear differential 

equations with constant coefficients. Its application allows converting an initial-

value problem in the variable � into an algebraic problem in the variable � and it is

through this that the solution of the differential equation is determined. Problems 

with discontinuous functions may be considered, such as the Heaviside step 

function or the Dirac delta "function" (impulse function). 

4.1 Definition, existence, and properties of the Laplace transform 

For a real variable function ����, � ≥ 0 under certain conditions, the Laplace

transform is given by 	��� or ℒ������
ℒ������ = 	��� = � ���� ∞ � ������  (1) 

as long as the integral exists. 

The Laplace transform can be described as 	��� or ℒ������ or ℒ��� and is a function

of the variable � .

To establish the existence of the Laplace transform, it is necessary to consider 

certain types of functions. As it will be shown in the next sections, it is possible to 

determine the Laplace transform for a wide range of functions, even when they 

have discontinuities. 

The next theorem determines under what conditions the Laplace Transform exists. 
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��� − /� = ����→������

Step function �����

This function ����� can be represented using Heaviside step functions as

����� = 1� i��� − /� − ��� − / − ���
and its Laplace transform is given by 

ℒ������� = 1� ���-�� − ���-.����   = ��-� 1 − ������
Therefore, the Laplace transform of ��� − /� is

ℒ���� − /�� = ����→���-� 1 − ������ = ��-�����→� 1 − ������
Using l´Hopital´s rule 

ℒ���� − /�� = ��-�����→� ������ = ��-� �1�
ℒ���� − /�� = ��-�

Figure 4.3 

a a + k

fk (t )

1/k

t
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CHAPTER 5

LINE INTEGRAL 

The line integral is fundamental in classical mechanics and involves the integration 

of a function along a domain that is a curve  � in ℝ�, Figure 5.1. The function is either

a scalar function or a vector valued function. Curves in ℝ� will also be considered

for simple examples, as in Example 5.1. 

Curve in ℝ�

5.1 Definition of line integral 

The line integral is generally presented in the form 

� � ⋅ 	
� (1) 

when the function � is a vector field. Next it will be shown how it is evaluated and

what is the meaning of this form of line integral. 

The curve is usually represented by 
 where

x 

y 

z 

C 

Figure 5.1 
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Representation of curve � and interior region

\C
\� $ \B

\� � 2 $ 1 � 1

By the theorem, it is obtained that 

e I\C
\� $ \B

\�J
g

	�	� � 7 7 1	�	� � 7 �3� $ ����
=

hUaU.

U
�

=
	� � 9

2

Now, calculating both line integrals, with the following parameterizations 


0�
� � �
, 
�, 
 ∈ �0,3�, (representing the straight-line segment) and in

positive direction 


��
� � �
, 4
 $ 
��, 
 ∈ �0,3�, (representing the segment of the

parabola) and this one, as it is, is traveled in opposite direction (and not 

upside down), which means that the corresponding integral will now be 

symmetric. 

So, the integral is then given by summing both line integrals in this way 

7 G�
0�
�� ⋅ 
0& �
�	
 $�
=

7 G�
��
�� ⋅ 
�& �
�	
 ��
=

� 7 �3 � 
, 2
� ⋅ �1,1�	
 $ 7 �3 � 4
 $ 
�, 2
� ⋅ �1,4 $ 2
�	
 ��
=

�
=

� 7 �3 � 3
 $ 3 $ 4
 � 
� $ 8
 � 4
��	
 � 9
2

�
=

Figure 5.7 

x

y

3

3

0
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CHAPTER 6 

SURFACE INTEGRAL 

 

 
 

 

 

 

 

 

A surface � is a two-dimensional exterior, or boundary, of a solid or an object. The 

surface can be open or closed. A surface is open when it has an edge or boundary, 

for example a sheet of paper or as the exterior boundary of a cone without including 

the bottom, just the lateral exterior surface. As an example of a closed surface, it 

can be mentioned the boundary of a sphere. 

A surface can be defined in a unique way, as in the case of a spherical surface, for 

example, or defined by the six plane faces of a cube, in the case of more than one 

surface. A surface � is always considered to be without thickness, and if it is bounded 

the value of its area can be evaluated. In general, it is considered as the geometric 

space with two degrees of freedom as illustrated in Figure 6.1.  

A representation of a surface can be explicit or implicit. For example, a conical 

surface, represented by the equation   

 � = ��� + �� 

 

is explicitly defined. An implicit representation of a surface is in turn of type 

 	
�, �, �� = 
                                                                                     (1) 

 

and it could be, in case of the supra mentioned cone  �� + �� − �� = 0, � ≥ 0. 

 

Parametric representation 

A parametric representation of a surface, is a vector valued function � defining all 

its points 
�, �, �� with just two parameters: 

 �
�, �� = 
�
�, ��, �
�, ��, �
�, ���, 
�, �� ∈ Ω ⊂ ℝ� 
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Answer 

As it can be verified, by sketching the vectors at some points, this vector 

field is purely radial, diverges at all points. 

∇ ⋅ T
�, �, �� = 7 ,,� , ,,� , ,,�8 ⋅ 
�, �, �� = 1 + 1 + 1 = 3
Example 6.7 Calculate ∇ ⋅ T
�, �, �� withT
�, �, �� = 
��, 1 + �, −���

Answer ∇ ⋅ T
�, �, �� =J ''G , ''Z , ''XK ⋅ 
��, 1 + �, −���=

=
''G 
��� + ''Z 
1 + �� + ''X 
−��� =

= 2� + 1 − �
Example 6.8 Curl of a vector field, �"^T = ∇ - T
�, �, ��
The curl represents the tendency of the particles in the fluid at points 
�, �, �� to

rotate around the axis pointing in the direction of �"^T.

Calculate ∇ - T
�, �, �� where T
�, �, �� = 
−�, �, 0�.

Answer 

In this case there is no divergence, it is null, and plotting the vectors at 

several points, they show to describe �-axis centered circles.
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Example 6.12 

Consider ���, �, �� � �� 	 �
, 	�, 	���, use Stokes' theorem to calculate 

� ��
��� ⋅ ���
�

 

Where � has positive �-component and is normal to the surface � described by  

�
 � �
 � �
 � 2�, � � 1. 

 

Answer 

As the flux is inward, line � must be traversed in clockwise direction when 

viewed from the positive side of the �-axis. Then, the unit normal vector 

will have negative component in the � -direction. 

 

 

 

 

 

 

 

 

 

 

Calculating ∮ �� ⋅ �� where ���� � ���� � , � !�, 1�, with 0 � � � 2#, as 

this parametric representation gives counterclockwise direction, 

multiplication by 	1 is needed. 

 

Stokes' theorem  

Consider � a piecewise smooth, orientable surface with parametric 

representation $�%� where % is a simple closed plane region, whose boundary 

is a piecewise smooth Jordan curve �´ and  $ is injective with continuous 

partial derivatives up to the second order on an open simply connected 

region. Let � be the image of �´ by  �. If ���, �, �� is a continuous vector field 

with continuous partial derivatives then 

∬ �
���� ⋅ ��� � ∳ �� ⋅ ��                                                                    �9�
  

� is the unit normal vector to the surface, pointing outward, such that: 

For a viewer travelling along � in positive direction having the surface by his 

left side, the unit normal vector � points upward. 

x 
y 

n 

z 

C 
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CHAPTER 7

FOURIER SERIES 

A Fourier series is an infinite sum of trigonometric functions, sines and cosines, 

which represents a periodic function. As an example of a trigonometric series, 

consider the series 

� 1 − (−1)��� 	
�( ��) + � (−1)�� ���( ��)�
���

�
���
It can be verified that it is a series containing sine and cosine terms and if the sum 

exists, that is, if the series converges, it is a periodic function of period 2�.

The purpose of this chapter is to represent periodic functions by combinations of 

the sine and cosine functions and to obtain trigonometric series called Fourier 

series. The Fourier series represent a very wide range of functions, even 

discontinuous. They are allowed to have several points of discontinuity and their 

application is wide, in various fields of engineering, such as vibration problems, 

signal theory or differential equations. In the domain of differential equations 

partial differential equations will be approached with this theory. Wave propagation 

and heat conduction problems are the most common examples in this field. 

In the case of a function having a period 2�, the Fourier series is given by

��2 + �(�� 	
�(��) + �� ���( ��))�
��� (1)
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Half-range sine or cosine expansions 

In practical problems it often is required to determine a Fourier series for a function $(�) given on the interval (0, �) instead of the full range interval (−�, �). Its odd

expansion is such that on the interval (−�, 0), $(�) is defined as $(�) = −$(−�).

This new function :(�) can then be extended into a periodic function of period 2�.

As :(�) is now odd and periodic, it is represented by a Fourier series called a Fourier

sine series and there is no need to calculate the coefficients ��  ��. It is sufficient to

calculate the coefficient ��.

Similarly, consider a function $(�) defined on the interval (0, �) (of some physical

interest), and consider its even expansion. It is such that on the interval (−�, 0) $(�)
is defined as $(�) = $(−�). So being an even and periodic function it is represented

by a Fourier series called half-range cosine series and there is no need to calculate 

the coefficient ��, just ��  and  ��.

In both these cases using the Dirichlet theorem, :(�) is correctly defined for all �.

Example 7.4 

Find the half-range cosine expansion :(�) of $(�) = �, � ∈ C0,2�D.

Answer 

Representation of $(�)
The plot of the graph, in ℝ�,  of the expansion of the function is given by

Figure 7.3 

$(�) extended as an even periodic function

Figure 7.2 

Figure 7.3 

x  
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For fixed �, the fundamental mode, for � = 1 is given by

For � = 3 is given by

For � = 5 is given by

For � = 7 is given by

The solution is the superposition of all vibration modes, � = 1,2,3, …

x0
0

0,5

1,5

2,5

2

1

1 2 3

x
–0,01
–0,04

0,4

1 2 3

x

0,010
–0,010 1 2 3

x

0,003
–0,003 1 2 3
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