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INTRODUCTION

This book is designed to assist undergraduate students in developing a good
background in Engineering Mathematics. It follows the structure and topics typically
found in Mathematical Analysis courses for engineers. It may also serve to graduate
students, for they often look for references when they need to apply their
mathematical knowledge. For instructors, it provides a practical teaching resource,
offering a concise synthesis of materials and exercises suitable for a one-semester
course.

Problems of Advanced Engineering Mathematics is a natural continuation of the
author’s two previous Portuguese editions, Problemas de Equagées Diferenciais
Ordindrias e Transformadas de Laplace and Problemas de Andlise Matemdtica para
Engenharia. In this volume, the author presents a revised and unified version of the
two books, including the most important chapters and a few updates. The new
English edition can now be used by international and mobility students and aims to
reach engineering learners around the world.

Each chapter includes selected worked examples. Step by step, students can use the
fundamental skills to solve problems in engineering mathematics.

Throughout the book, 450 problems are proposed, each accompanied by the correct
answers so students can check their homework.

The main topics of fundamental engineering mathematics are covered: differential
equations in Chapters 1 through 3, Laplace transforms in Chapter 4, line integrals in
Chapter 5, surface integrals and Gauss’ and Stokes’ theorems in Chapter 6 and
finally, Chapter 7 focuses on Fourier series and presents the solution of the vibrating
string equation using the method of separation of variables and Fourier series.
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CHAPTER 1

FIRST-ORDER ORDINARY DIFFERENTIAL
EQUATIONS

In this chapter, first-order differential equations containing the first derivative of the
function y are studied, which are represented by Equation 1. The independent
variable is usually x, and so the function y(x) is the dependent variable. All
derivatives are ordinary derivatives of y(x) with respect to a single independent
variable x.

F(x,,y')=0 (1)

First-order equations are too general and it is not possible to obtain a method to
solve them all. Throughout the chapter integration processes are established for
certain types of differential equations. The first equations considered have the

derivative explicitly given as y' = f(x, y). Section 1.6 deals with some examples of
differential equations where y'(x) is defined implicitly by y = f(x,y").

Definition: order of a differential equation
Order of a differential equation is the order of the highest-order derivative of
the dependent variable which appears in the equation.

1.1 Separable differential equations
A separable differential equation is an equation that takes the form

gy’ =fx) (2)

CHAPTER 1. FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 11



the perpendicularity relationship between tangent lines to these curves at the point
of intersection is given by the equation

Orthogonal trajectories of the family F(x,y) are then obtained from the
differential equation

F*(x,y,—}%):o (9)

and its integration giving Y, ().

Equation 9 is a first-order differential equation that can be solved using the methods
for determining the solution of first-order differential equations described
throughout this chapter.

Example 1.9
Determine the equation of the family of curves orthogonal to the one-parameter
family x? + y? = 2ax.

Answer

The given family is a family of circles with centers on the x-axis and
tangent to the y-axis (Figure 1.1).

Figure 1.1 Representation of trajectories
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which is a family of ellipses (Figure 1.3).

Figure 1.3 Representation of orthogonal trajectories

Problems

Determine the equation of the orthogonal trajectories of the following families of

curves:
130y = ae*’,a >0
131y = acosx
1.32y%2+2ax=0, a>0
133y =ax™

1.34 x* + yk = gk
1.35y2 + x% = ax*
1.36 cos x coshy = a
1.37 xy? — 4ax? =
1.38x = qe ™’
139y = axe*

Answers

1.30y%? =C — Inx
1.31y? = In(Csin?x)
1322x2+y?2=C
133x2+ny?=¢C
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CHAPTER 2

HIGHER-ORDER ORDINARY DIFFERENTIAL
EQUATIONS

In this chapter, ordinary differential equations of order n usually represented by

Flx.y, 9" ,y™)=0 (1)

are studied. Methods for solving these equations are only a few specific ones, and
for linear equations a theory is presented.

2.1 Reducing the order of differential equations

In some particular cases it is possible to reduce the order of a differential equation
like Equation 1 obtaining differential equations of lower order that are simpler to
solve.

Two cases in which this reduction of order applies are approached next.

i) The equation does not contain the dependent variable y and some of its
derivatives y’, ...y(k'l) explicitly:

F(x, y(k)’y(k+1), ’y(n)) =0

With a change of variable like

z=y®

the order of the equation is reduced in k units by obtaining

F(x,Z,Z’,"',Z(n_k)) =0

CHAPTER 2. HIGHER-ORDER ORDINARY DIFFERENTIAL EQUATIONS 63
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2111 =41cm, v =6cms~ !

2.2 Linear differential equations of order n

Linear differential equations of order n are of the type

ap()y™ + a; ()y™V + -+ ay ()Y + a,()y = f(x) (2)
with ay(x) # 0.

This equation is linear in y and its derivatives. The coefficients
ao(x),a,(x), ...,a,(x) and f(x) are continuous functions in a domain of validity.
In the case of f(x) = 0 the equation is said to be the associated homogeneous
equation and is written as

ao()y™ + a; ()y™ D + -+, ()Y + a,(x)y =0 (3)

Theorem

Consider Equation 2 under the above conditions. If x; is a point of the domain
of ay(x),a;(x), ...,a,(x), f(x) and given real values kg, ky, ..., k,,_4, then,
there exists one only solution y(x) of Equation 2 such that

y(.xo) = ko,y’(xo) = kl' y(n_l)(xo) = k‘l’l—l'

2.2.1 Solutions of the homogeneous and non-homogeneous equation.
Main theorems

Theorem

If the functions y4, y5, ..., ¥, are m particular solutions of Equation 3 then, any
linear combination of these solutions is also a solution of the homogeneous
equation.

68 PROBLEMS OF ADVANCED ENGINEERING MATHEMATICS



CHAPTER 3

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

The formulation of the problem of a physical system’s behavior with n degrees of
freedom, leads to a system of n simultaneous differential equations in which the
independent variable is usually time.

In this chapter, only linear systems in the dependent variable consisting of n
differential equations involving n unknowns x4, x5, ..., X, will be considered

x1 = a1 ()% + a0z + -+ + a2, + f1.(0)
Xy = ‘12'1(’—')351 + Az (D)% + -+ + g (Dxn + f(8) (1)

Xp = Ay ()21 + apa (D)% + -+ + A ()2 + f(8)

Theorem (existence and uniqueness of the solution)

If the coefficients a;;(t) of this system and f;(t) are all continuous functions over
an interval [, if ty € I and if kq,k,, ..., k,, are n arbitrary constants, then there
exists one and only one solution x; (t), x5 (t), ..., x,(t) in I such that x,(t,) = k4,
X2 (to) = koy o, x5 (o) = kp.

There is a close relationship between linear differential equations of order n and
linear differential systems of the same order. In fact, it turns out that a linear
differential equation of order n can always be transformed into a linear system of n
differential equations.

To check this statement, consider the equation

y® +a;(Oy® Y + a,(O)y™ D + -+ a,()y = f(¢t) (2)

CHAPTER 3. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 87



Finally, the particular solution is given by

x,(t) = X&) [ X1 () f(t)dt (13)

Example 3.4

Solve the following system of differential equations:
X1 = 3x, + 30

{xé = —3x, — 3t

Answer
In matrix form, the system is written as

(=% D6+

The associated homogeneous system is first solved. So, by calculating the
eigenvalues of the coefficient matrix

a4 2)=15 2o

it leads to the characteristic equation
22+49=0

which has as its roots

A=Z3i

Calculating now the eigenvectors, considering the eigenvalue A = 3i. The
equation to be solved is

(5 o)) =3(2)
which is equivalent to the system

{ 3u2 = 3lu1
—3u1 = 3lu2
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CHAPTER 4

LAPLACE TRANSFORM

The Laplace transform is a particularly useful tool in solving linear differential
equations with constant coefficients. Its application allows converting an initial-
value problem in the variable t into an algebraic problem in the variable s and it is
through this that the solution of the differential equation is determined. Problems
with discontinuous functions may be considered, such as the Heaviside step
function or the Dirac delta "function" (impulse function).

4.1 Definition, existence, and properties of the Laplace transform

For a real variable function f(t),t = 0 under certain conditions, the Laplace
transform is given by F(s) or L{f (t)}

LIFDY = F(s) = [, f() e~stdt (1)
as long as the integral exists.

The Laplace transform can be described as F(s) or L{f (t)} or L{f} and is a function
of the variable s ..

To establish the existence of the Laplace transform, it is necessary to consider
certain types of functions. As it will be shown in the next sections, it is possible to
determine the Laplace transform for a wide range of functions, even when they
have discontinuities.

The next theorem determines under what conditions the Laplace Transform exists.

CHAPTER 4. LAPLACE TRANSFORM 109



§(t —a) = limf, ()

1 @©

1k S

a a+t+k

Figure 4.3  Step function f; (t)

This function f;, (t) can be represented using Heaviside step functions as

[u(t—a) —u(t—a—k)]

& =

fi(®) =

and its Laplace transform is given by

e—as e—(a+k)s 1— e—ks
— ,—as
=e

S

1
L{f(®) = E( - ~

Therefore, the Laplace transform of 6(t — a) is

_ ,—ks _ ,—ks
L{6(t—a)}= lime‘as—e = e Slim 1-¢
k-0 ks k—0 ks
Using I'Hopital’s rule
£05 _ p-asy; se™™ sl
b-a)=e s ¢ s

L{6(t—a)}=e7%
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CHAPTER 5

LINE INTEGRAL

The line integral is fundamental in classical mechanics and involves the integration
of a function along a domain thatisa curve CinR3, Figure 5.1. The function is either
a scalar function or a vector valued function. Curves in R? will also be considered
for simple examples, as in Example 5.1.

Figure 5.1 Curve in R3

5.1 Definition of line integral

The line integral is generally presented in the form

Jo frda (1)

when the function f is a vector field. Next it will be shown how it is evaluated and
what is the meaning of this form of line integral.
The curve is usually represented by a where

CHAPTER 5. LINE INTEGRAL 149
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y
3,
T X
3
Figure 5.7 Representation of curve C and interior region
0Q oP 1
ox dy B

By the theorem, it is obtained that

) P 3 r4x—x? 3 9
ﬂ —Q—— dydx=.[ f 1dydx=f(3x—x2)dx=—
y 0 Jx 0 2

Now, calculating both line integrals, with the following parameterizations

a,(t) = (¢, t),t € [0,3], (representing the straight-line segment) and in
positive direction

a,(t) = (t, 4t —t?),t € [0,3], (representing the segment of the
parabola) and this one, as it is, is traveled in opposite direction (and not
upside down), which means that the corresponding integral will now be
symmetric.

So, the integral is then given by summing both line integrals in this way

3 3
fo Flay(®)) - s (t)dt - fo Flay(®)) - ay(t)dt =
= f3(3 +t,2t) - (1,1)dt — F(s + 4t — t2,2t) - (1,4 — 2t)dt =
03 0 9
=j (3+3t—3—4t+t2—8t+4t2)dt=§
0

PROBLEMS OF ADVANCED ENGINEERING MATHEMATICS



CHAPTER 6

SURFACE INTEGRAL

A surface S is a two-dimensional exterior, or boundary, of a solid or an object. The
surface can be open or closed. A surface is open when it has an edge or boundary,
for example a sheet of paper or as the exterior boundary of a cone without including
the bottom, just the lateral exterior surface. As an example of a closed surface, it
can be mentioned the boundary of a sphere.

A surface can be defined in a unique way, as in the case of a spherical surface, for
example, or defined by the six plane faces of a cube, in the case of more than one
surface. A surface S is always considered to be without thickness, and if it is bounded
the value of its area can be evaluated. In general, it is considered as the geometric
space with two degrees of freedom as illustrated in Figure 6.1.

A representation of a surface can be explicit or implicit. For example, a conical
surface, represented by the equation

2= T2

is explicitly defined. An implicit representation of a surface is in turn of type
F(x,y,2)=C (1)

and it could be, in case of the supra mentioned cone x? + y?2 —2z2 =0,z > 0.
Parametric representation

A parametric representation of a surface, is a vector valued function r defining all
its points (x, y, z) with just two parameters:

r(u,v) = (x(u,v),y(u,v),z(u,v)), (U, v) € Q c R?

CHAPTER 6. SURFACE INTEGRAL 173



Answer
As it can be verified, by sketching the vectors at some points, this vector
field is purely radial, diverges at all points.

R 7

- -

N AN 7’
&&R 7'22
— - >

& ~
& ~

RSN

—

v Y

0 9 0

——,—] =1+1+1=
ax'(')y'(')z) (x,3,2) i 3

V-F(x,y,z) = (

Example 6.7 Calculate V - F(x,y, z) with
F(x,y,2) = (x%,1+7y,—yz)

Answer

a a0 0
V-F(x,y,2) =(5'5.£)'(x2, 1+y, —yz)=

2+ 2 9 (—vz) =
A CORICTCRBO R CIE
=2x+1-y
Example 6.8 Curl of a vector field, rotF = V x F(x,y, )
The curl represents the tendency of the particles in the fluid at points (x,y, z) to
rotate around the axis pointing in the direction of rotF.
Calculate V X F(x,y, z) where F(x,y,z) = (—y,x,0).
Answer

In this case there is no divergence, it is null, and plotting the vectors at
several points, they show to describe z-axis centered circles.
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Stokes' theorem

Consider S a piecewise smooth, orientable surface with parametric
representation r(T) where T is a simple closed plane region, whose boundary
is a piecewise smooth Jordan curve C” and r is injective with continuous
partial derivatives up to the second order on an open simply connected
region. Let C be the image of C" by a. If F(x,y, z) is a continuous vector field
with continuous partial derivatives then

JIgcurlF -ndS = ¢ F - da 9

n is the unit normal vector to the surface, pointing outward, such that:
For a viewer travelling along C in positive direction having the surface by his
left side, the unit normal vector n points upward.

Example 6.12
Consider F(x,y,z) = (y — z2,—x,—yz), use Stokes' theorem to calculate

ffcurlF -ndS
s

Where n has positive z-component and is normal to the surface S described by
x2+y?+z2=2z,2z<1.

Answer

As the flux is inward, line C must be traversed in clockwise direction when
viewed from the positive side of the z-axis. Then, the unit normal vector
will have negative component in the z -direction.

Calculating gSCF -da where a(t) = (cost,sint, 1), with 0 < t < 2m, as
this parametric representation gives counterclockwise direction,
multiplication by —1 is needed.

CHAPTER 6. SURFACE INTEGRAL 189



CHAPTER 7

FOURIER SERIES

A Fourier series is an infinite sum of trigonometric functions, sines and cosines,
which represents a periodic function. As an example of a trigonometric series,
consider the series

n

1 (D" v D"
—————cos(nx) + sin(nx)
z n? ;

n=1

It can be verified that it is a series containing sine and cosine terms and if the sum
exists, that is, if the series converges, it is a periodic function of period 2.

The purpose of this chapter is to represent periodic functions by combinations of
the sine and cosine functions and to obtain trigonometric series called Fourier
series. The Fourier series represent a very wide range of functions, even
discontinuous. They are allowed to have several points of discontinuity and their
application is wide, in various fields of engineering, such as vibration problems,
signal theory or differential equations. In the domain of differential equations
partial differential equations will be approached with this theory. Wave propagation
and heat conduction problems are the most common examples in this field.

In the case of a function having a period 21, the Fourier series is given by

% + Z(an cos(nx) + b, sin(nx)) D

n=1

CHAPTER 7. FOURIER SERIES 201



Half-range sine or cosine expansions

In practical problems it often is required to determine a Fourier series for a function
f(x) given on the interval (0,1) instead of the full range interval (—[,1). Its odd
expansion is such that on the interval (—[, 0), f(x) is defined as f(x) = —f(—x).
This new function F(x) can then be extended into a periodic function of period 21.
As F(x) is now odd and periodic, it is represented by a Fourier series called a Fourier
sine series and there is no need to calculate the coefficients ay a,,. It is sufficient to
calculate the coefficient b,,.

Similarly, consider a function f(x) defined on the interval (0,1) (of some physical
interest), and consider its even expansion. It is such that on the interval (—[,0) f(x)
is defined as f(x) = f(—x). So being an even and periodic function it is represented
by a Fourier series called half-range cosine series and there is no need to calculate
the coefficient b, just a, and a,.

In both these cases using the Dirichlet theorem, F(x) is correctly defined for all x.

Example 7.4
Find the half-range cosine expansion F(x) of f(x) = x, x € ]0,2m[.

Answer

2n X

Figure 7.2 Representation of f(x)

The plot of the graph, in R?, of the expansion of the function is given by
Figure 7.3

2n x

Figure 7.3 £(x) extended as an even periodic function
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For fixed t, the fundamental mode, forn = 1 is given by

2,5
2
1,5
1
0,5
0 i T T T

For n = 3 is given by

0,4 V\ /\
0,01 j — \\/ 3
—0,04 X

Forn = 5 is given by

0,010 j o~
~0,010 j ' ~ '

Forn = 7 is given by

0,003 j , ,
70’0031 "1 T T

X

The solution is the superposition of all vibration modes, n = 1,2,3, ...

PROBLEMS OF ADVANCED ENGINEERING MATHEMATICS



LUISA MADUREIRA

Problems of Advanced
Engineering Mathematics

About the book

This book of problems, designed as a practical tool for engineering students, is based
on the author's experience of about 40 years teaching Mathematical Analysis at the
University of Porto, Faculty of Engineering. It includes three chapters focused on
differential equations, which have wide applications in the field of engineering, as well
as a chapter introducing Laplace transforms and its application to ordinary differential
equations. The final three chapters cover problems of line and surface integrals, as
well as Fourier series.

About the author

Luisa Madureira, was born at Porto and graduated in Mathematics in 1984 at
University of Porto. She is a Professor in the Mechanical Engineering Department at
the University of Porto where she teaches Mathematical Analysis courses to students
in Mechanical Engineering, Industrial and Management Engineering and Computing
Science Engineering. She completed her PhD in Mechanical Engineering in 1996 and
has published several papers in international journals and also two student-oriented
books, Problemas de Equagdes Diferenciais Ordindrias e Transformads de Laplace
and Problemas de Andlise Matemdtica para Engenharia.

Also avaiable in e-book

=

L E| ISBN: 978-989-930-502-1

789899730502

www.quanhcaedltora.pt

engebock



	PAME_EN_Paginas_iniciais
	CONTENTS
	INTRODUCTION
	Cap 1_1 15 out
	Cap 1_2 15 out
	Cap 2 15 out
	Cap 3 15 out
	Cap 4 14 out
	Cap 5 14 out
	Cap 6 14 out
	Cap 7 14 out
	BIBLIOGRAPHY
	PAME_EN_Pagina_ultimas



