Bases de Matemática para engenheiros electrotécnicos

Bases de Matemáticapara engenheiros electrotécnicos

MANUEL BOLOTINHA

AUTOR

Manuel Bolotinha

TÍTULO

BASES DE MATEMÁTICA para engenheiros electrotécnicos

EDICÃO

Quântica Editora - Conteúdos Especializados, Lda.

Praça da Corujeira n.º 38 4300-144 PORTO – geral@guanticaeditora.pt

CHANCEL A

Engebook – Conteúdos de Engenharia

DISTRIBUIÇÃO

Booki – Conteúdos Especializados

Tel. 220 104 872 · Fax 220 104 871 · info@booki.pt – www.booki.pt

PARCEIRO DE COMUNICAÇÃO

oelectricista - Revista Técnica · www.oelectricista.pt

DESIGN E REVISÃO

Delineatura - Design de Comunicação - www.delineatura.pt

IMPRESSÃO

Setembro, 2025

DEPÓSITO LEGAL

551236/25

A **cópia ilegal** viola os direitos dos autores.

Os prejudicados somos todos nós.

Copyright © 2025 | Todos os direitos reservados a Quântica Editora – Conteúdos Especializados, Lda. para a língua portuguesa.

A reprodução desta obra, no todo ou em parte, por fotocópia ou qualquer outro meio, seja eletrónico, mecânico ou outros, sem prévia autorização escrita do Editor e do Autor, é ilícita e passível de procedimento judicial contra o infrator.

Este livro não se encontra em conformidade com o novo Acordo Ortográfico de 1990.

CDU

519.6 – Matemática aplicada à técnica, tecnologia e engenharia

510.2 – Matemática para engenheiros

621.3 - Engenharia eletrotécnica em geral

ISBN

Papel 9789899177918 E-book 9789899177925

Catalogação da Publicação Família Eletrotecnia Subfamília Outros

ÍNDICE

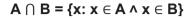
PREFÁCIO		
CAPÍ	TULO 1 – LÓGICA MATEMÁTICA E TEORIA DE CONJUNTOS	15
1.1.	LÓGICA MATEMÁTICA	15
1.2.	LEIS DE DE MORGAN	17
	TEORIA DE CONJUNTOS	17
	ÁLGEBRA DE CONJUNTOS	19
1.5.	ANÉIS E GRUPOS	22
	ÁLGEBRA DE BOOLE	24
1.7.	APLICAÇÕES	25
CAPÍ	TULO 2 – SUCESSÕES E PROGRESSÕES	29
CAPÍ	TULO 3 – EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES	31
3.1.	DEFINIÇÕES	31
	PROPRIEDADES DAS EQUAÇÕES E INEQUAÇÕES	32
	TIPOS DE EQUAÇÕES E INEQUAÇÕES	33
	RESOLUÇÃO DE EQUAÇÕES	35
	RESOLUÇÃO DE INEQUAÇÕES	36
	EQUAÇÕES COM DUAS INCÓGNITAS	37
	SISTEMAS DE EQUAÇÕES	39
3.8.	EXEMPLO DE APLICAÇÃO	40
CAPÍ	TULO 4 – GEOMETRIA EUCLIDIANA	43
4.1.		43
4.2.		44
4.3.	TEOREMA DE TALES	44
	ESTUDO DO TRIÂNGULO	45
	ÁREAS DE ALGUMAS FIGURAS PLANAS	48
	VOLUMES DE ALGUNS SÓLIDOS	51
4.7.	MÉDIA GEOMÉTRICA	52
CAPÍ	TULO 5 – FUNÇÕES E LIMITES	53
5.1.	DEFINIÇÃO DE APLICAÇÃO E FUNÇÃO	53
5.2.	TIPOS E PROPRIEDADES DAS FUNÇÕES	55
5.3.	FUNÇÕES COMPOSTAS E INVERSAS	59
5.4.	LIMITES – DEFINIÇÕES E PROPRIEDADES	60
5.5.	CÁLCULO DE LIMITES E INDETERMINAÇÕES	62
CAPÍ	TULO 6 – EXPONENCIAIS E LOGARITMOS	69
6.1.	FUNÇÕES EXPONENCIAIS – DEFINIÇÃO	69

6.2.	PROPRIEDADES E OPERAÇÕES DAS FUNÇÕES EXPONENCIAIS	71
6.3.	FUNÇÕES LOGARÍTMICAS – DEFINIÇÃO	71
6.4.	PROPRIEDADES E OPERAÇÕES DAS FUNÇÕES LOGARÍTMICAS	72
6.5.	APLICAÇÕES	73
CAPÍT	TULO 7 – TRIGONOMETRIA	75
7.1.	INTRODUÇÃO	75
7.2.	AS FUNÇÕES TRIGONOMÉTRICAS	75
7.3.	LEIS E PROPRIEDADES DAS FUNÇÕES TRIGONOMÉTRICAS	78
7.4.	APLICAÇÕES	79
CAPÍI	ΓULO 8 – CÁLCULO VECTORIAL	83
8.1.	DEFINIÇÕES E PROPRIEDADES	83
8.2.	OPERAÇÕES COM VECTORES	84
8.3.	APLICAÇÕES TÍPICAS	90
CAPÍT	ΓULO 9 – SÉRIES	93
9.1.	DEFINIÇÃO	93
9.2.	CLASSIFICAÇÃO E PROPRIEDADES	94
9.3.	SÉRIES DE FUNÇÕES	95
9.4.	SÉRIES DE FOURIER	98
CAPÍI	ΓULO 10 – CÁLCULO DIFERENCIAL E INTEGRAL	101
10.1.	DERIVADA DE UMA FUNÇÃO – DEFINIÇÃO E CONCEITOS GERAIS	101
10.2.	TEOREMAS DE LAGRANGE, ROLLE E CAUCHY	104
10.3.	PROPRIEDADES DAS DERIVADAS	106
10.4.		107
10.5.	INTEGRAL DE UMA FUNÇÃO – DEFINIÇÃO E CONCEITOS GERAIS	109
10.6.	GENERALIZAÇÃO DO CONCEITO DE INTEGRAL	113
10.7.	RELAÇÃO ENTRE OS CONCEITOS DE DERIVADA E DE INTEGRAL – PRIMITIVAS	120
CAPÍI	TULO 11 – MATRIZES E DETERMINANTES	123
11.1.	DEFINIÇÃO DE MATRIZ E NOTAÇÕES	123
11.2.	OPERAÇÕES COM MATRIZES	124
11.3.	DETERMINANTES	126
11.4.	PROPRIEDADES DOS DETERMINANTES	128
11.5.	RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES COM DETERMINANTES	128
CAPÍI	TULO 12 – OPERADORES DIFERENCIAIS	131
12.1.	DEFINIÇÃO GERAL	131
12.2.	PROPRIEDADES GERAIS DO OPERADOR NABLA	132
12.3.	GRADIENTE	133
12.4.	DIVERGÊNCIA	133
12.5	ROTACIONAL	134

12.6.	DERIVADA DIRECCIONAL	135
12.7.	LAPLACIANO	136
12.8.	RELAÇÕES ENTRE OPERADORES	136
12.9.	EQUAÇÕES DE MAXWELL	136
CAPÍTI	JLO 13 – FUNÇÕES HIPERBÓLICAS	139
13.1.	INTRODUÇÃO	139
13.2.	AS FUNÇÕES HIPERBÓLICAS	140
13.3.	RELAÇÃO ENTRE AS FUNÇÕES HIPERBÓLICAS E TRIGONOMÉTRICAS	142
13.4.	LEIS E PROPRIEDADES DAS FUNÇÕES HIPERBÓLICAS	142
13.5.	APLICAÇÕES	144
CAPÍTI	JLO 14 – TRANSFORMADA DE LAPLACE	145
14.1.	INTRODUÇÃO	145
14.2.	DEFINIÇÕES	145
14.3.	PRODUTO DE CONVOLUÇÃO	147
14.4.	PROPRIEDADES DA TRANSFORMADA DE LAPLACE	148
14.5.	RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS	150
CAPÍTI	JLO 15 – NOÇÕES GERAIS DE PROBABILIDADES E ESTATÍSTICA	153
	INTRODUÇÃO	153
15.2.	ANÁLISE COMBINATÓRIA	153
15.3.	PROBABILIDADE – DEFINIÇÃO E PROPRIEDADES	155
	TEORIA DAS PROBABILIDADES	157
15.5.	DISTRIBUIÇÕES DE PROBABILIDADES MAIS UTILIZADAS	159
	Distribuição de Bernoulli	159
	Distribuição Geométrica	159
	Distribuição de Poisson	160
	Distribuição Uniforme	162
	Distribuição Normal ou de Gauss	163
	Distribuição de Weibull	164
	NOÇÕES BÁSICAS DE ESTATÍSTICA	166
	MEDIDAS DE DISPERSÃO	169
15.8.	MARGEM DE ERRO E INTERVALO DE CONFIANÇA	170
ÍNDICE	DE TABELAS E FIGURAS	173

2) Intersecção de conjuntos

Considerando dois *conjuntos* **A** e **B** a sua **intersecção** representa-se por **A** ∩ **B**, e se que define como:



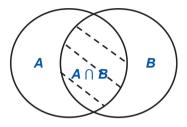


Figura 1.3 – Intersecção de conjuntos

Se se verificar a relação $A \cap B = \Phi$, os *conjuntos* $A \in B$ dizem-se **disjuntos**.

O **conjunto vazio** é designado por **valor absorvente** da *intersecção de conjuntos* e U por **valor neutro** da mesma operação, uma vez que:

- $A \cap \Phi = \Phi$
- A∩U=A

3) Diferença de conjuntos

Considerando dois *conjuntos* **A** e **B** a sua **diferença** representa-se por **B** - **A**, e se que define como:

$$B - A = \{x: x \ni A \land x \in B\}$$

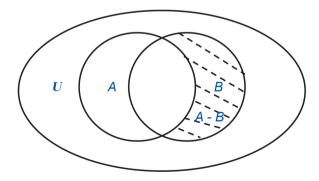


Figura 1.4 – Diferença de conjuntos

As raízes da equação são pois:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \wedge x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Para que a equação tenha solução é necessário verificar-se:

$$b^2 - 4ac \ge 0$$

c) Equações biquadradas

Para a solução deste tipo de equações, depois da equação ter sido reduzida à sua *forma canónica*, faça-se $\mathbf{x} = \pm \sqrt{\mathbf{y}}$

Teremos então:

$$ax^4 + bx^2 + c = 0 \leftrightarrow ay^2 + by + c = 0$$

Resolvendo esta equação em ordem a y, utilizando a fórmula resolvente das equações do segundo grau, obtêm-se as raízes x₁ e y₂.

As raízes da equação biguadrada são pois:

$$y_1 = \sqrt{y_1}$$
; $y_2 = -\sqrt{y_1}$; $y_3 = \sqrt{y_2}$; $y_4 = -\sqrt{y_2}$

Para que a equação tenha solução é necessário verificar-se:

$$y_1 \ge 0 \land y_1 \ge 0$$

3.5. RESOLUÇÃO DE INEQUAÇÕES

Para inequações com formas canónicas semelhantes às equações referidas em 4, resolve-se a relação como se fosse uma equação, cuja(s) raíz(es) definem os extremos inferior e/ou superior dos intervalos dos valores de x que satisfazem à relação.

Exemplos

1)
$$ax + b > 0 \leftrightarrow x > -b/a$$

As raízes da inequação estão compreendidas no intervalo]-b/a, +∞ [.

2)
$$ax - b \le 0 \leftrightarrow x \le b/a$$

3) Na primeira equação substitui-se **x** pelo valor encontrado no passo 2).

$$ax + by + c = 0 \leftrightarrow a(\frac{\frac{ce}{b} + f}{d - \frac{ae}{b}}) + by + c = 0 \leftrightarrow by = -c - (\frac{\frac{ce}{b} + f}{d - \frac{ae}{b}}) \leftrightarrow$$

$$-c - (\frac{\frac{ce}{b} + f}{d - \frac{ae}{b}})$$

$$\leftrightarrow y = \frac{ce}{b} + f$$

Este valor de y é a outra raíz do sistema.

3.8. EXEMPLO DE APLICAÇÃO

Considere-se o circuito eléctrico representado na Figura 3.3, onde:

- Carga: 3000 W / 230 V; factor de potência = 0,79.
- $R_1 = 3.87 \Omega$
- $R_2 = 0.25 \Omega$
- $I_3 = 4 A$
- $I_{\Delta} = 8,06 A$

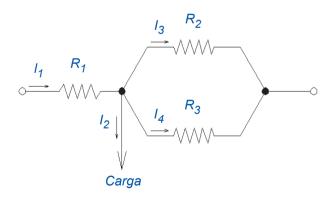


Figura 3.3 - Circuito eléctrico

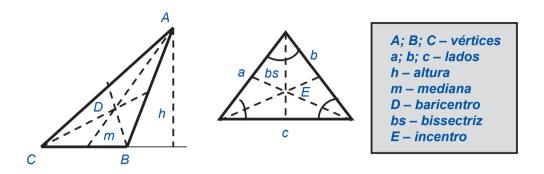


Figura 4.4 – Elementos notáveis do triângulo

d) Resolução de triângulos

A designada **resolução de triângulos** é um conjunto de fórmulas que permitem determinar os valores dos ângulos, dos lados e de outros elementos notáveis, recorrendo a conceitos de geometria e de trigonometria (ver Capítulo 7).

Atente-se na Figura 4.5:

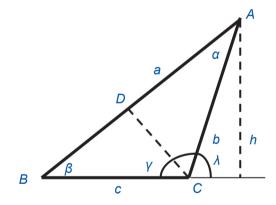


Figura 4.5 - Triângulo

As fórmulas utilizadas para resolver o triângulo são:

- 1) $\alpha + \beta + \gamma = 180^{\circ}$
- 2) $\lambda = \alpha + \beta$
- 3) $h = c \times sen (180^{\circ} \gamma)$

x é designado como o **domínio** de **f(x)** e **y** como o seu **contra-domínio**; **x** designa-se como **argumento** da função.

Considerando o *universo dos números reais* ou os seus sub-conjuntos, as *funções* no plano **XY** são representadas por um conjunto de **pares ordenados** do tipo (x_1, y_1) , designado por **coordenadas**, em que x_1 é um elemento do *domínio* e designado por **abcissa** e y_1 um elemento do *contra-do-mínio* e designado por **ordenada**; nesse plano as funções podem ser representadas por *gráficos*.

Para um melhor entendimento da **diferença entre aplicação e função**, considerem-se as equações $x^2 + y^2 = r^2$ e $y = x^2$, cujos gráficos no plano **XY** representam uma *circunferênci*a e uma *parábola*, respectivamente.

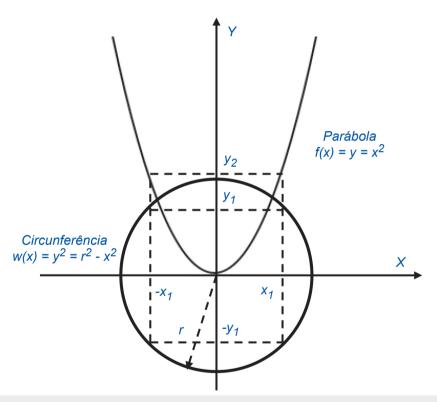


Figura 5.1 – Gráficos das equações $x^2 + y^2 = r^2$ e $y = x^2$

Da análise dos gráficos da Figura 5.1 pode concluir-se

- $w(x_1) = y_1 \wedge w(x_1) = -y_1$
- $w(x_2) = y_1 \wedge w(x_2) = -y_1$
- $f(x_1) = f(x_2) = y_2$

w(x) não é uma função (é uma aplicação) e f(x) é uma função.

•
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

•
$$\lim_{x \to a} [\log_a f(x)] = \log_a \left[\lim_{x \to a} f(x) \right]$$
, se $\lim_{x \to a} f(x) > 0$

•
$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$$

Sendo f'(x) a função derivada²³ de f(x), lim f(x) = lim f'(x) - regra de l' Hospital.
 x → a x → a

5.5. CÁLCULO DE LIMITES E INDETERMINAÇÕES

Quando se calculam **limites** podem surgir *expressões* do tipo k / 0, k / $+\infty$, k/ $-\infty$, $\infty - \infty$, 0 / 0, 0^0 , 0 / ∞ , ∞ / 0, 1^∞ e ∞^0 , sendo k uma constante.

Por convenção define-se:

- $\forall x \neq 0, x^0 = 1$
- $\forall k \neq 0$ e constante, k / $0 = +\infty$, se $x \rightarrow 0^+$
- $\forall k \neq 0$ e constante, k / $0 = -\infty$, se $x \rightarrow 0^-$
- ∀k ≠ 0 e constante, (k / +∞) = (k / -∞) = 0

As expressões ($\infty - \infty$) (0 / 0), (0 / ∞), (∞ / 0), 0^0 1 $^\infty$ e ∞^0 designam-se por **indeterminações**, sendo necessário resolver cada uma destas situações caso a caso, segundo regras pré-estabelecidas, algumas das quais recorrem à *regra de l' Hospital*; esta operação é habitualmente designada por "*levantar a indeterminação*".

Vejam-se agora os valores dos limites de diversos tipos de funções:

1) Função polinomial do tipo $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$

•
$$\lim_{x \to +\infty} f(x) = +\infty$$
, se $a_n > 0$

- $\lim_{x \to +\infty} f(x) = -\infty$, se $a_n < 0$ e n for um número par.
- lim f(x) = + ∞, se a_n < 0 e n for um número ímpar.
 x → -∞
- $\lim_{x \to -\infty} f(x) = -\infty$, se $a_n < 0$ e n for um número par.

²³ Ver o Capítulo 10.

8.3. APLICAÇÕES TÍPICAS

Uma das aplicações típicas dos *vectores* em *Engenharia Electrotécnica* é a representação de *grandezas eléctricas*, sendo as mais usuais as seguintes:

A. Tensões e correntes dos sistemas trifásicos.

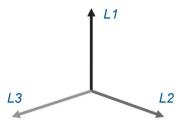


Figura 8.5 – Representação vectorial de tensões e correntes

B. Desfasagem entre tensões e correntes.

Figura 8.6 – Representação vectorial da desfasagem entre tensão e corrente (corrente em atraso)

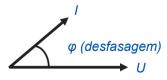


Figura 8.7 – Representação vectorial da desfasagem entre tensão e corrente (corrente em avanço)

CAPÍTULO 10 - CÁLCULO DIFERENCIAL E INTEGRAL

Temas do Capítulo

Derivada de Uma Função – Definição e Conceitos Gerais
Teoremas de Lagrange, Rolle e Cauchy
Propriedades das Derivadas
Equações Diferenciais
Integral de Uma Função – Definição e Conceitos Gerais
Generalização do Conceito de Integral
Relação Entre os Conceitos de Derivada e de Integral – Primitivas

10.1. DERIVADA DE UMA FUNÇÃO - DEFINIÇÃO E CONCEITOS GERAIS

Considere-se a função f(x) de $R \to R$; define-se derivada dessa *função* em *ordem* a x como a função definida pela expressão:

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

A *derivada* de f(x) em qualquer ponto do seu *domínio*⁴⁴ (A) representa a taxa de variação da função naquele ponto. Se o limite acima indicado existir $\forall x \in D$, a função diz-se que é **derivável** ou **diferenciável** em A. A *derivada* de uma *função* em qualquer ponto do seu domínio representa a **tangente** ao gráfico da função naquele ponto e o valor de x – ver Figura 10.1.

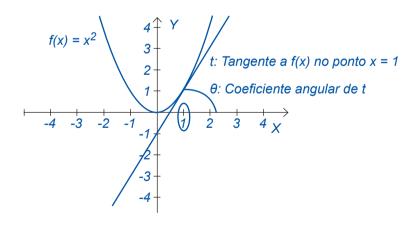


Figura 10.1 – Gráfico da função x²

⁴⁴ Ver Capítulo 5.

Se a equação envolver uma ou mais funções e as suas derivadas parciais, como é o caso das equações de Maxwell⁵⁰, designa-se como equação de derivadas parciais ou equação diferencial parcial, e de que se apresenta um exemplo (seja $\mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y})$ e $\mathbf{v} = \mathbf{g}(\mathbf{x}, \mathbf{y})$):

$$\frac{\partial^2 u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

As equações diferenciais ordinárias classificam-se por **ordem**, de acordo com a **ordem mais elevada** da *derivada* que constitui um dos termos da equação. No primeiro exemplo deste ponto a *equação* diz-se de **primeira ordem**, ou **equação diferencial linear**, enquanto no exemplo seguinte a equação diz-se de **terceira ordem**:

$$x^2 + \frac{d^3y}{dx} 5x^2 \frac{dy}{dx} + 2y = 0$$

Generalizando se um dos termos da equação for a derivada de ordem n, a equação diz-se ser uma equação diferencial de ordem n, ou equação diferencial não-linear.

As equações diferenciais lineares dizem-se **homogéneas**, se a **soma** das suas raízes (soluções) ou os seus **múltiplos** forem também uma solução da equação; os coeficientes dos <u>termos com derivadas</u> podem ser funções de variável independente, variáveis ou constantes.

Tal como nas *equações algébricas*⁵¹, também as *equações diferenciais* podem constituir um *sistema de equações*, como se mostra no exemplo sequinte:

$$\begin{cases} \frac{\partial V}{\partial x} + \frac{\partial u}{\partial y} + 3y = 0 \\ \frac{\partial^2 V}{\partial y} + \frac{\partial u}{\partial x} + x = 0 \end{cases}$$

A **resolução** de *equações diferenciais* é realizada por meio de **integração**, tema que será objecto de análise nos pontos subsequentes deste capítulo, ou por recurso à **transformada de Laplace**⁵².

⁵⁰ Ver Capítulo 12.

⁵¹ Ver Capítulo 3.

⁵² Ver Capítulo 14.

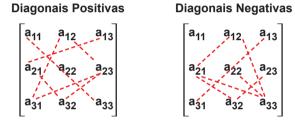
Considere-se agora a seguinte matriz de 3 x 3:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

O seu determinante é calculado pela expressão:

$$|A| = [(a_{11} \times a_{22} \times a_{33}) + (a_{12} \times a_{23} \times a_{31}) + (a_{13} \times a_{21} \times a_{32})] - [(a_{31} \times a_{22} \times a_{13}) + (a_{32} \times a_{23} \times a_{11}) + (a_{33} \times a_{21} \times a_{12})]$$

Observando a *matriz* anterior pode-se concluir quais são as **diagonais positivas e negativas**, para cálculo do *determinante*:



Para o cálculo do *determinante* de *matrizes* de $\mathbf{n} \times \mathbf{n}$, em que $\mathbf{n} \ge \mathbf{4}$, utiliza-se o **teorema de** Laplace, cujo enunciado é o seguinte:

"O determinante de uma matriz é igual à soma dos produtos dos elementos de qualquer linha ou coluna pelos respectivos **complementos algébricos**".

Define-se **complemento algébrico** de qualquer *elemento* \mathbf{a}_{ij} de uma *matriz quadrada* A de $\mathbf{n} \times \mathbf{n}$, como o número \mathbf{A}_{ii} calculado pela seguinte expressão:

$$A_{ii} = (-1)^{i+j} \times |A'|$$

Onde |A'| é o determinante da matriz (A') que resulta da supressão da linha e da coluna da matriz A que contenha o elemento $\mathbf{a_{ii}}$.

Exemplo

Considerando $\mathbf{a_{ii}} = \mathbf{a_{12}}$ na matriz \mathbf{A} abaixo indicada, a matriz \mathbf{A} ' é:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \longrightarrow A' = \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}$$

É habitual dividir as equações de Maxwell em dois regimes: o regime "microscópico" ou equações no vácuo e o regime "macroscópico" ou equações gerais. Na Tabela 12.1 indicam-se as leis atrás referidas e as respectivas equações de Maxwell nos dois regimes.

Tabela 12.1 – Equações de Maxwell

Designação do Lei	Equações de Maxwell	
Designação da Lei	Equações no vácuo	Equações gerais
Lei de Gauss	div E = ρ / ϵ_0	div D = ρ
Lei de Gauss para o magnetismo	div B = 0	div B = 0
Lei de Faraday (da indução)	$rot E = -\frac{\partial B}{\partial t}$	rot E = $-\frac{\partial B}{\partial t}$
Lei de Ampère (com a correcção de Maxwell)	$rot B = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$	$rot B = J + \frac{\partial D}{\partial t}$

O significado das grandezas das *equações de Maxwell* e as respectivas unidades, no **Sistema Internacional de Unidades (SI)** indicam-se na Tabela 12.2.

Tabela 12.2 – Definição das grandezas das equações de Maxwell

Símbolo	Grandeza	Unidade
E	Campo eléctrico	volt por metro ⁷³ (V/m)
В	Densidade de fluxo magnético ou indução magnética	tesla (T)
D	Campo de deslocamento eléctrico	coulomb ⁷⁴ por metro quadrado (C/m²)
J	Densidade de corrente	ampère por metro quadrado (A/m²)
ρ	Densidade de carga	coulomb por metro cúbico (C/m³)
$\boldsymbol{\varepsilon}_0$	Permissividade ou capacidade específica do vácuo	farad por metro (F/m)
μ_0	Permeabilidade magnética do vácuo	henry por metro (H/m)
<u>ð</u>	Derivada parcial em ordem ao tempo	

⁷³ De acordo com o SI o nome das grandezas, qualquer que seja, é sempre escrito com letras minúsculas.

⁷⁴ coulomb: unidade de carga eléctrica; farad: unidade de capacidade electrostática; henry: unidade de indutância. Nota: O nome das unidades é sempre escrito com letras minúsculas.

4) Probabilidade condicionada de A se verificar se o acontecimento B se verificar:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- 5) P(A ^ B) = P(A | B) x P(B) = P(B | A) x P(A), sendo A e B acontecimentos não independentes.
- 6) Probabilidade inversa de A: P(AC) = 1 P(A).
- 7) Sendo A e B acontecimentos pertencentes a conjuntos disjuntos82, P(A ^ B) = 0.
- 8) Considerando o conjunto dos *acontecimentos elementares* **A**_i num *universo* U finito e **P(A**_i) a *probabilidade* de esses acontecimentos se verificarem:

$$\sum_{i=1}^{n} P(A(i)) = 1$$

9) Sendo A₁ e A₂ conjuntos de acontecimentos no universo U, constituídos por acontecimentos elementares A₁ se A₁ ∈ A₁ ∩ A₂, então:

$$P(A_1 \land A_2) = \sum_{i=1}^{n} P(A(i)) [se A_1 \cap A_2 = \Phi, então P(A_1 \land A_2) = 0]$$

Nas condições enunciadas no número anterior se A_i ∈ A₁ U A₂, então:

$$P(A_1 V A_2) = \sum_{i=1}^{n} P(A(i))$$

15.4. TEORIA DAS PROBABILIDADES

As probabilidades dos acontecimentos têm habitualmente uma distribuição tipificada que é estudada na teoria das probabilidades, o ramo da matemática que estuda as probabilidades e os acontecimentos aleatórios. Para uma melhor compreensão deste tema relembre-se alguns conceitos fundamentais, que serão retomados no estudo da estatística.

A distribuição de probabilidade é um conceito estatístico (ver ponto 6) que atribui a cada conjunto mesurável a probabilidade de ocorrência de qualquer acontecimento aleatório. Esta probabilidade é uma função F(x), cujo domínio é o conjunto mesurável e cujo contra-domínio⁸³ está incluído no intervalo [0, 1].

⁸² Ver Capítulo 1.

⁸³ Ver Capítulo 5.

Figura 15.10 – Gráfico de segmentos

Figura 15.11 – Gráfico sectorial

15.7. MEDIDAS DE DISPERSÃO

Em estatística as **medidas de dispersão** são utilizadas para verificar se os valores alcançados estão *próximos ou afastados* da **média** da *distribuição probabilística* (ver ponto 4). Para além da *média* (**E(X)**), *variância* (**Var (X)**) e do *desvio padrão* (**σ**), já abordados no referido ponto 4, as outras medidas de dispersão utilizadas são o **desvio médio** e o **coeficiente de variação**.

Bases de Matemática para engenheiros electrotécnicos

MANUEL BOLOTINHA

Sobre a obra

A matemática é uma ferramenta indispensável à engenharia, designadamente a electrotécnica, sendo imprescindível o conhecimento das bases e dos princípios dos vários temas matemáticos.

Esse conhecimento é fundamental para que não haja dúvidas nem erros na opção pela escolha e pela utilização do princípio matemático que deve ser usado em cada problema profissional que temos que resolver, designadamente os cálculos a efectuar e a elaboração de algoritmos, sendo também relevante a sua utilização para a definição das leis específicas.

Este último livro tem como objectivo recordar os princípios básicos da matemática, permitir um entendimento das principais leis e apresentar exemplos típicos de utilização da generalidade dos temas abordados.

Sobre o autor

Manuel Bolotinha, MSc, licenciou-se em 1974 em Engenharia Electrotécnica (Ramo de Energia e Sistemas de Potência) no Instituto Superior Técnico – Universidade de Lisboa (IST/UL), onde foi Professor Assistente, e obteve o grau de Mestre em Abril de 2017 em Engenharia Electrotécnica e de Computadores na Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa (FCT-UNL).

Tem desenvolvido a sua actividade profissional nas áreas do projecto, fiscalização de obras e gestão de contratos de empreitadas designadamente de projectos de geração e transporte de energia, instalações industriais e infra-estruturas de distribuição de energia, aero-portuárias e ferroviárias, não só em Portugal, mas também em África, na Ásia e na América do Sul.

Membro Sénior da Ordem dos Engenheiros, é também Formador Profissional, credenciado pelo IEFP, tendo conduzindo cursos de formação, de cujos manuais é autor, em Portugal, África e Médio Oriente.

É também autor de diversos artigos técnicos publicados em Portugal e no Brasil e de livros técnicos, em português e inglês, e tem proferido palestras na OE, ANEP, FCT-UNL, IST e ISEP.

Parceiro de Comunicação

o electricista 📻

