MANUEL BOLOTINHA

Conceitos Gerais de Segurança

na Construção, Manutenção e Exploração das Instalações

AUTOR

Manuel Bolotinha

TÍTULO

CONCEITOS GERAIS DE SEGURANÇA - Na Construção, Manutenção e Exploração das Instalações

EDICÃO

Quântica Editora – Conteúdos Especializados, Lda. Praca da Corujeira n.º 38 · 4300-144 PORTO

Tel: 220 939 053 · E-mail: geral@quanticaeditora.pt · www.quanticaeditora.pt

CHANCELA

Engebook - Conteúdos de Engenharia

DISTRIBUIÇÃO

Booki - Conteúdos Especializados

Tel. 220 104 872 · E-mail: info@booki.pt · www.booki.pt

APOIO

Cenertec – Centro de Energia e Tecnologia • www.cenertec.pt Ordem dos Engenheiros - Região Sul • www.ordemengenheiros.pt

REVISÃO

Quântica Editora - Conteúdos Especializados, Lda.

DESIGN

Quântica Editora - Conteúdos Especializados, Lda.

IMPRESSÃO Julho, 2024

DEPÓSITO LEGAL 528050/24

A cópia ilegal viola os direitos dos autores

Os prejudicados somos todos nós.

Copyright © 2024 | Todos os direitos reservados à Quântica Editora - Conteúdos Especializados, Lda. A reprodução desta obra, no todo ou em parte, por fotocópia ou qualquer outro meio, seja eletrónico, mecânico ou outros, sem prévia autorização escrita do Editor e do Autor, é ilícita e passível de procedimento judicial contra o infrator.

Por opção do autor, este livro não segue o novo Acordo Ortográfico de 1990.

CDU

621.3 Engenharia Elétrica

DO

https://doi.org/10.61875/9789899177338

ISBN

Papel: 9789899177338 E-book: 9789899177345

Catalogação da publicação Família: Eletrotecnia Subfamília: Outros

ÍNDICE

	MBULO	
	TE I - SEGURANÇA NA CONSTRUÇÃO, MANUTENÇÃO E	
	LORAÇÃO DE INSTALAÇÕES ELÉCTRICAS	
1. INT	RODUÇÃO	21
2. LE	GISLAÇÃO, NORMAS E REGULAMENTOS APLICÁVEIS	23
3. PR	INCÍPIOS BÁSICOS DE SEGURANÇA	27
4. PL	ANO DE SEGURANÇA E SAÚDE (PSS)	29
5. TÉ	CNICO DE HIGIENE E SEGURANÇA	31
6. O (CHOQUE ELÉCTRICO	33
6.1.	Os Efeitos da Corrente Eléctrica no Corpo Humano	33
6.2.	Tensões de Contacto e de Passo. Rede de Terras	35
6.3.	O Arco Eléctrico	37
6.4.	Arc Flash	39
6.4.1.	Definição de arc flash	39
6.4.2.	Origens e características do arc flash	39
6.4.3.	Danos e lesões provocados pelo arc flash	40
6.4.4.	Protecção Contra os efeitos do arc flash	41
6.5.	Medidas de Segurança Contra o Choque Eléctrico	42
6.6.	Primeiros Socorros	45
7. N A	TUREZA DOS TRABALHOS	47
	SCOS DAS OPERAÇÕES DE MONTAGEM, PROCEDIMENTOS E MEDIDAS	
	/ENTIVAS	
8.1.	Introdução	
8.2.	Riscos e Medidas Preventivas na Construção	52

ÍNDICE

8.2.1.	Ocupação de via pública	52
	8.2.1.1. Riscos	52
	8.2.1.2. Medidas preventivas	52
8.2.2.	Movimentação mecânica de cargas	53
	8.2.2.1. Riscos	53
	8.2.2.2. Medidas preventivas	53
8.2.3.	Utilização de gruas móveis	53
	8.2.3.1. Riscos	53
	8.2.3.2. Medidas de prevenção	54
8.2.4.	Montagem de pórticos e postes	54
	8.2.4.1. Riscos	54
	8.2.4.2. Medidas preventivas	54
9. ES	TALEIRO DE OBRAS	57
10. EC	QUIPAMENTOS DE PROTECÇÃO	59
11. TR	ABALHOS EM ALTURA	63
12. AS	SPECTOS DE SEGURANÇA NAS OPERAÇÕES DE MANUTENÇÃO	65
	Aspectos Gerais	
	Controlo das Fontes de Energia (LOTO)	
	Conceitos gerais	
	. Controlo das fontes de energia	
	. Procedimentos LOTO	
12.3.	PTW	69
13. TF	RABALHOS EM ESPAÇOS CONFINADOS	71
13.1.	Definição e Tipos de Espaços Confinados	7 1
13.2.	Riscos dos Espaços Confinados	
13.3.	Medidas Preventivas	72
14. TF	RABALHOS EM ZONAS ATEX	77
14.1.	Definição das Zonas ATEX	77
	Obrigações do Empregador	
14.3.	Aparelhos e Sistemas de Protecção em Zonas ATEX. Características Gerais	80
15. 01	UTROS RISCOS	 8 1
	LANO DE EMERGÊNCIA	
16.1.	Considerações Gerais	85
16.2.	Tipos de Acidentes	85

16.2.1.	Acidentes tecnológicos	85
16.2.2	. Causas naturais	86
16.3.	Organização do Plano de Resposta a Emergência	86
16.3.1.	Acções a desenvolver	86
16.3.2	Meios necessários	86
16.4.	Combate a Incêndios	88
PAR	TE II – SISTEMAS ELECTRÓNICOS DE SEGURANÇA	93
17. IN	TRODUÇÃO	95
18. NO	ORMAS, REGULAMENTOS E CERTIFICAÇÕES	97
18.1.	Regulamentos	97
18.2.	Normas	98
18.3.	Certificações	98
19. SI	STEMA AUTOMÁTICO DE DETECÇÃO DE INCÊNDIOS (SADI)	99
19.1.	Funções e Constituição do SADI	99
19.2.	Tecnologias e Critérios Gerais de Concepção do SADI	102
19.3.	Características Gerais dos Equipamentos do SADI	104
19.3.1.	Centrais automáticas e painéis automáticos de detecção de incêndios	104
19.3.2	Detectores automáticos	105
	19.3.2.1. Detectores de fumos	106
	19.3.2.1.1. Detectores ópticos	106
	19.3.2.1.2. Detectores lineares	107
	19.3.2.1.3. Detectores por aspiração	107
	19.3.2.2. Detectores de temperatura	108
	19.3.2.3. Detectores de chamas	108
	19.3.2.4. Detectores para túneis	109
19.3.3.	Detectores manuais	110
19.3.4	. Módulos de entrada/saída e módulos de interface	111
19.3.5.	Sinalizadores acústicos	111
19.3.6	. Sinalizadores ópticos	112
19.3.7.	Painéis repetidores	112
20. SI	STEMA AUTOMÁTICO DE DETECÇÃO DE GÁS	115
20.1.	Tipos de Gases e Riscos	115
20.2.	Sistemas de Detecção e Equipamentos	117
20.3.	Interacção com Outros Sistemas e Arquitectura TipoTipo	122
21. SI	STEMA AUTOMÁTICO DE DETECÇÃO DE CO (CDCO)	125
21.1.	Funções e Constituição do Sistema	125

ÍNDICE

21.2.	Características Gerais dos Equipamentos	126
21.3.	Arquitectura Tipo e Princípios de Instalação	128
22. S	STEMA DE DETECÇÃO DE INTRUSÃO	129
22.1.	Funções e Constituição do Sistema	129
22.2.	Características dos Equipamentos	129
22.2.1	Centrais de intrusão (CI)	129
22.2.2	. Equipamentos de detecção	132
22.2.3	. Equipamento de operação	134
22.2.4	. Cablagem do sistema	135
22.3.	Detecção de Intrusão de Perímetros Exteriores	135
23. S	STEMA DE CONTROLO DE ACESSOS	137
23.1.	Função e Operacionaldade do Sistema	137
23.2.	Constituição e Arquitectura Tipo do Sistema	138
23.3.	Características dos Equipamentos	139
24. S	ISTEMA DE VIGILÂNCIA VÍDEO (CCTV)	141
24.1.	Funções e Constituição do Sistema	141
24.1.1.	Considerações gerais	141
24.1.2	. Constituição e princípio de funcionamento	142
24.1.3	. Localização das câmaras de vídeo	144
24.2.	Características Gerais dos Equipamentos	146
24.2.1	. Câmaras de vídeo	146
24.2.2	2. Equipamento central	148
	24.2.2.1. Matrizes de vídeo	148
	24.2.2.2. Multiplexers	149
	24.2.2.3. Posto de controlo	150
	24.2.2.4. Monitores de vídeo	150
24.2.3	S.Cablagem do sistema	150
25. O	UTROS SISTEMAS DE SEGURANÇA	151
26. S	STEMA INTREGRADO DE SEGURANÇA	155
PAR	TE III - ANEXOS	157
ANE	(O 1. PRINCIPAIS REGULAMENTOS INTERNACIONAIS	159
ANE	(O 2. NORMAS RELEVANTES	160
ANE	(O 3. DOCUMENTOS E PROCEDIMENTOS DE SEGURANÇA (EXEMPLOS)	162
ANE	(O 4. BOLETIM DE CONSIGNAÇÃO (EXEMPLO)	169
ANE	(O 5. REGIMES DE NEUTRO EM INSTALAÇÕES DE BAIXA TENSÃO	171

ANEXO 6. SISTEMA DE UNIDADES	179
ANEXO 7. ÍNDICES DE PROTECÇÃO DOS EQUIPAMENTOS	181
ANEXO 8. CLASSIFICAÇÃO DOS LOCAIS COM RISCO DE EXPLOSÃO E	
CARACTERÍSTICAS DOS EQUIPAMENTOS	183
ÍNDICE DE FIGURAS E TABELAS	CLXXXVII
BIBLIOGRAFIA	CXCI

ÍNDICE

6. O CHOQUE ELÉCTRICO

6.1. Os Efeitos da Corrente Eléctrica no Corpo Humano

O *trabalho em instalações eléctricas, ou perto delas*, significa que existe o **risco** de um **choque eléctrico**, e consequentemente que uma **corrente eléctrica circule no corpo humano**, devido às seguintes razões:

- Contacto directo com partes normalmente em tensão.
- Contacto com partes que não estão normalmente em tensão, mas que na sequência de um defeito ficam acidentalmente em tensão (contacto indirecto).
- Existência de diferenças de potencial entre pontos diferentes do solo (tensão de passo ver Capítulo 6.2.).

O **percurso da corrente eléctrica** através do corpo humano é **imprevisível**, e o seu **valor** depende de vários factores, tais como:

- · Tensão de serviço.
- Tempo durante o qual a corrente circula no corpo humano.
- · Valor da corrente.

- Frequência da rede.
- Percurso da corrente.
- · Capacidade de reacção da pessoa.

A figura 6.1. apresenta exemplos do percurso da corrente eléctrica através do corpo humano.

Figura 6.1. Percurso da corrente eléctrica através do corpo humano.

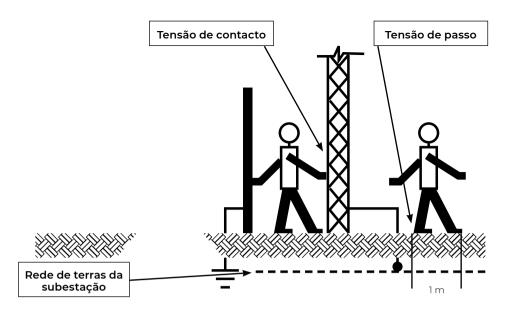


Figura 6.3. Tensões de contacto e de passo.

A **rede geral de terra** é constituída por **uma malha de cabo de cobre nu**, enterrado no solo, complementada por **varetas de aço revestido a cobre** (*eléctrodo de terra*), tendo como objectivo a segurança das pessoas, limitando as *tensões de passo e de contacto* a **valores não perigosos**, mostrando-se na figura 6.4. um exemplo.

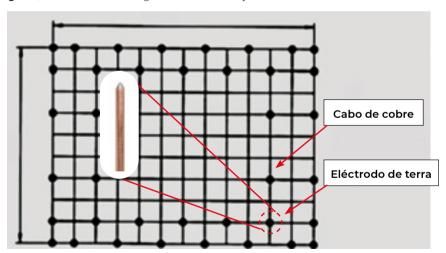


Figura 6.4. Malha de terra.

A secção do cabo é calculada de acordo com o valor da **corrente de curto-circuito Fase- Terra**, embora seja prática habitual utilizar para este fim o valor da **corrente de curto-circuito trifásico**.

Recomenda-se que o dimensionamento da rede de terras seja feito de acordo com o estabelecido na *Norma IEEE Std. 80-2000* (**resistência de terra e tensões de passo e de contacto**).

Tensão de passo

$$\begin{aligned} & \textbf{U}_{\text{passo}} = (1000 + 6 \times \textbf{C}_{\text{s}} \times \rho_{\text{s}}) \times 0.116 / \sqrt{\textbf{t}_{\text{s}}} - \underline{para \ \text{um peso corporal de 50 kg}} \\ & \textbf{U}_{\text{passo}} = (1000 + 6 \times \textbf{C}_{\text{s}} \times \rho_{\text{s}}) \times 0.157 / \sqrt{\textbf{t}_{\text{s}}} - \underline{para \ \text{um peso corporal de 70 kg}} \end{aligned}$$

Tensão de contacto

$$\begin{aligned} &\mathbf{U}_{\mathrm{cont}} = (1000 + 1.5 \times \mathbf{C}_{\mathrm{s}} \times \boldsymbol{\rho}_{\mathrm{s}}) \times 0.116 / \sqrt{t_{\mathrm{s}}} - \underbrace{para\ \mathrm{um}\ peso\ corporal\ de\ 50\ \mathrm{kg}}_{\mathrm{cont}} \\ &\mathbf{U}_{\mathrm{cont}} = (1000 + 1.5 \times \mathbf{C}_{\mathrm{s}} \times \boldsymbol{\rho}_{\mathrm{s}}) \times 0.157 / \sqrt{t_{\mathrm{s}}} - \underbrace{para\ \mathrm{um}\ peso\ corporal\ de\ 70\ \mathrm{kg}}_{\mathrm{cont}} \end{aligned}$$

Resistência de terra

$$R_{\tau} = (\rho/4) \times \sqrt{(\pi/A) + \rho/l_{\tau}}$$

C_e é o factor de depreciação da camada superficial do solo, sendo calculado pela expressão:

$$C_s = 1 - \frac{0,09 \times (1 - \frac{\rho}{\rho_s})}{2h_s + 0,09}$$

Onde:

- $\cdot t_s$ é o tempo de duração do defeito, em **s**.
- $\cdot \rho_a$ é a resistividade superficial do terreno (usualmente a gravilha), em $\Omega \cdot \mathbf{m}$.
- $\cdot \rho$ é a resistividade do terreno abaixo da gravilha, em Ω m.
- h é a espessura da camada superficial, em m.

Caso não exista camada superficial, então $C_s = 1 e \rho_s = \rho_s$.

Estes cálculos são habitualmente realizados com recurso a *software* específico. Contudo, de acordo com o estabelecido no *RSSPTS* o valor da resistência de terra das *SE* deve ser $\leq 1 \Omega$.

Embora a norma seja explícita, afirmando que apenas se aplica a subestações exteriores, é habitual utilizá-la igualmente para o cálculo da rede de terras das subestações interiores.

6.3. O Arco Eléctrico

O arco eléctrico pode definir-se como a *ruptura dieléctrica* de um gás, produzindo uma descarga eléctrica no **plasma**¹² e o consequente estabelecimento de uma *corrente eléctrica* através de um **meio físico normalmente não condutor**.

¹² O **plasma** é, em Física, um dos quatro estados fundamentais da matéria (os outros são os *sólidos*, *os líquidos* e *os gases*), sendo um meio electricamente neutro (*a sua carga eléctrica* é *nula*). Pode ser criado quer por aquecimento de um gás quer sujeitando-o a um campo electromagnético intenso, o que aumenta ou diminui o número de electrões, criando partículas com carga eléctrica positiva ou negativa (essas partículas designam-se por *iões*). A presença de um número significativo de partículas capazes de conduzir cargas eléctricas torna o *plasma* condutor, dando-lhe a propriedade de responder a um campo electromagnético forte.

24.2.2.3 Posto de controlo

O **posto de controlo** é do tipo teclado de mesa, destinado ao **controlo e programação do sistema**, incorporando teclas, visor e joystick.

Figura 24.9. Posto de controlo.

24.2.2.4. Monitores de vídeo

Os **monitores de vídeo** são **policromáticos**, do tipo LCD de alta resolução, preferencialmente de **17"/20"**, com altifalante incorporado e entradas de áudio e VGA analógica.

Deverão dispor de botões de comando e parametrização na parte frontal do monitor e características de PIP, que possibilita **visualizar simultaneamente** as imagens de CCTV e ambiente de trabalho em PC. A função de PIP deverá **possibilitar a exibição de uma imagem** com **1/9 do ecrã**, com capacidade para colocação em qualquer local do ecrã.

24.2.3. Cablagem do sistema

A ligação entre as câmaras e a matriz é habitualmente realizada com cabo coaxial do tipo RG 59^{58} , ou no caso de câmaras *IP* ou analógicas para grandes distâncias, devido à atenuação de sinal dos cabos coaxiais, com cabo **UTP** $4 \times 2 \times 0,5$, **Cat. 6a**.

O cabo tipo RG 59 é constituído por: bainha exterior em PVC. dieléctrico em polietileno sólido. condutor central em copperweld⁵⁹ (ou cobre). blindagem em malha de cobre com **95% de cobertura**. As suas características principais são:

- Impedância característica: **75** Ω .
- Atenuação aproximada a 750 MHz: 0,222 dB/m.
- Atenuação aproximada a 85 MHz: 0,076 dB/m.
- · Normas de fabrico: EN 50117. IEC 6146.

Os cabos podem ser instalados em *esteira metálica* ou enfiados em *tubo VD* ou de ferro galvanizado.

⁵⁸ Ver referência [5] da Bibliografia.

⁵⁹ Condutor com alma de aço revestida a cobre.

25. OUTROS SISTEMAS DE SEGURANÇA

Existem outros sistemas que embora formalmente não sejam considerados como SES, desempenham também um **papel importante na segurança de pessoas e bens**. De entre aqueles sistemas referem-se:

• **Sistemas de vídeo-porteiro**, instalados actualmente na generalidade dos novos *edificios de habitação e em alguns edifícios de serviços*.

Figura 25.1. Sistema de vídeo-porteiro.

• **Detectores de inundação**, destinados a *detectar a presença de líquidos*, que devem ser instalados nos locais onde seja provável a presença de *fluidos contendo água* como resultado de uma *infiltração ou inundação*.

Figura 25.2. Detector de inundação.

