INTRODUÇÃO À CIÊNCIA E ENGENHARIA DOS MATERIAIS

TEORIA

RICARDO J. C. CARBAS EDUARDO A. S. MARQUES CATARINA S. P. BORGES LUCAS F. M. DA SILVA

AUTORES Ricardo J. C. Carbas · Eduardo A. S. Marques · Catarina S. P. Borges · Lucas F. M. da Silva

TÍTULO INTRODUÇÃO À CIÊNCIA E ENGENHARIA DOS MATERIAIS TEORIA

EDIÇÃO Quântica Editora – Conteúdos Especializados, Lda. Tel. 220 939 053 · E-mail: geral@quanticaeditora.pt · www.quanticaeditora.pt Praça da Corujeira n.º 38 · 4300-144 PORTO

CHANCELA Engebook – Conteúdos de Engenharia

DISTRIBUIÇÃO Booki – Conteúdos Especializados Tel. 220 104 872 · E-mail: info@booki.pt · www.booki.pt

APOIO CENFIM – Centro de Formação Profissional da Indústria Metalúrgica e Metalomecânica · www.cenfim.pt RAMADA AÇOS, S.A. – www.ramada.pt

REVISÃO Quântica Editora - Conteúdos Especializados, Lda.

DESIGN Delineatura – Design de Comunicação · www.delineatura.pt

IMPRESSÃO Dezembro, 2023

DEPÓSITO LEGAL 506300/22

A **cópia ilegal** viola os direitos dos autores. Os prejudicados somos todos nós.

Copyright © 2023 | Todos os direitos reservados a Quântica Editora – Conteúdos Especializados, Lda. A reprodução desta obra, no todo ou em parte, por fotocópia ou qualquer outro meio, seja eletrónico, mecânico ou outros, sem prévia autorização escrita do Editor e do Autor, e ilícita e passível de procedimento judicial contra o infrator.

Este livro encontra-se em conformidade com o novo Acordo Ortográfico de 1990, respeitando as suas indicações genéricas e assumindo algumas opções específicas.

CDU 621 Engenharia mecânica em geral. 621.7 Tecnologia mecânica em geral: processos, ferramentas, máquinas, equipamentos							
DOI https://doi.org/10.61875/9789899101517							
ISBN Papel: E-book:	9789899101517 9789899101531						
Catalogação Família: Subfamília:	o da publicação Engenharia Mecânica Materiais / Metalúrgica						

ÍNDICE

XV

PREFÁCIO

1.	EST	RUTU	RA DO	OS MATERIAIS	17
	1.1.	Introd	ução		19
	1.2.	Classes	s de mate	eriais	19
	1.3.	Proprie	edades m	necânicas	21
	1.4.	Compo	ortament	o elástico	22
		1.4.1.	Definiçã	io de tensão	22
		1.4.2.	Definiçã	io de deformação	23
		1.4.3.	Coeficie	nte de Poisson	24
		1.4.4.	Módulo	de elasticidade e lei de Hooke	25
		1.4.5.	Relação	entre módulo de Young e densidade	26
	1.5.	Ligaçõ	es atómi	cas	28
		1.5.1.	Ligação	iónica	29
		1.5.2.	Ligação	covalente	30
		1.5.3.	Ligação	31	
		1.5.4.	Ligação	de van der Waals	32
	1.6.	Empilh	namento	de átomos num sólido	33
		1.6.1.	Cristalo	grafia geométrica	34
			1.6.1.1.	Redes cristalinas	34
			1.6.1.2.	Índices de Miller	35
		1.6.2.	Estrutur	as cristalinas dos metais	38
			1.6.2.1.	Estrutura cúbica de corpo centrado (CCC)	38
			1.6.2.2.	Estrutura cúbica de faces centradas (CFC)	39
			1.6.2.3.	Estrutura hexagonal compacta (HC)	39
			1.6.2.4.	Comparação das estruturas CFC e HC	40
		1.6.3.	Factores	s de ocupação atómico, planar e linear	40
		1.6.4.	Distânci	ias interplanar e interatómica	42
		1.6.5.	Estrutur	a cristalina dos materiais cerâmicos	43
		1.6.6.	Arranjo	atómico nos polímeros	44

2.	DIA	GRAMAS DE FASES	47							
	2.1. 2 2	Introdução Difusão	49 49							
	2.2.	2.2.1. Lei de Fick	50							
		2.2.2. Coeficiente de difusão	50							
		2.2.3. Mecanismos de difusão	51							
	2.3.	Transformações de fase	52							
	2.4.	Diagramas de fases	54							
		2.4.1. Limite de solubilidade	54							
		2.4.2. rases 2.4.2. Soluções sólidas	56							
		2.4.2.2.Compostos definidos	56							
	2.5.	Microestrutura	57							
	2.6.	Relação de Gibbs	58							
	2.7.	Regras de interpretação dos diagramas de fases binários	58							
		2.7.1. Regra da alavanca (ou dos sogmontos inversos)	59							
		2.7.2. Regra da alavanca (ou dos segmentos inversos)	59							
		2.7.4. Domínios trifásicos	61							
	2.8.	Reação eutética	62							
		2.8.1. Ligas tais que $0 \le X \le x$ (C ₁)	63							
		2.8.2. Ligas tais que $x(C_1) < X < x(C_2)$	64							
	2.9.	Diagrama de fases e diagrama de constituintes	67							
	2.10.	nansiorinações de tase congruentes Análice térmica cimples								
	2.11.	Analise territica simples	09							
3.	DEF	Ο ΜΑÇÃO ΡLÁSTICA	71							
-	3.1.	Introdução	73							
	3.2.	Cedência e ductilidade	73							
		3.2.1. Deformação elástica	73							
		3.2.2. Deformação plástica	74							
		3.2.3. Curva real	80							
		3.2.4. Ensaio de tração	83							
		3.2.4.1. Parâmetros de resistência	84							
		3.2.4.2. Parametro de resiliência	86							
		3.2.4.4. Parâmetro de tenacidade	86							
		3.2.5. Ensaio de dureza	87							
		3.2.5.1. Ensaio Vickers	88							
		3.2.5.2. Ensaio Brinell	89							
		3.2.5.3. Ensaio Rockwell	89							
	3.3.	Mecanismos de deformação	90							
		3.3.1. Resistencia teorica dos cristals	91							
		3.3.2.1. Defeitos pontuais	92							
		3.3.2.2. Defeitos lineares	94							
		3.3.2.3. Defeitos planos	96							

	4.3.	Junta de grão	96
		3.3.3. Movimento das deslocações	96
		3.3.3.1. Deslocação canto (ou cunha)	96
		3.3.3.2. Sistemas de deslizamento	97
		3.3.4. Maclagem	98
		3.3.5. Deformação plástica em polímeros	99
4.	ME	CANISMOS DE ENDURECIMENTO	101
	4.1.	Introdução	103
	4.2.	Endurecimento de monocristais	103
		4.2.1. Intrínseco	103
		4.2.2. Precipitados em monocristais	103
		4.2.3. Solução sólida em monocristais	105
		4.2.4. Encruamento em monocristais	106
	4.3.	Juntas de grão em policristais	107
	4.4.	Aparecimento de uma segunda fase	108
	4.5.	Interação de deslocações com átomos intersticiais	110
	4.6.	Envelhecimento por deformação	111
	4./.	Endurecimento de polímeros	113
5.	ME	CÂNICA DA FRATURA	115
	5.1.	Introdução	117
	5.2.	Rotura frágil	117
	5.3.	Teoria de Griffith	120
	5.4.	Plasticidade na extremidade de fendas	122
	5.5.	Fator intensidade de tensão	123
	5.0. 5.7	Mocanismos de retura	123
	5.7.	5 7 1 Botura dúctil	120
		5.7.2. Rotura frágil	120
6.	FAC	DIGA	131
	6.1.	Introdução	133
	6.2.	Definição dos ciclos de tensão	133
	6.3.	Elevado número de ciclos	135
		6.3.1. Ensaios de fadiga	135
		6.3.2. Curvas SN	136
		6.3.3. Efeito da tensão média	138
		6.3.4. Efeito da variação da onda de tensão	140
	6.4.	Baixo número de ciclos	143
	6.5.	Componentes com fendas	144
		6.5.2 Lei de Paris	145
			140
	6.6.	Mecanismos de rotura por fadiga	148
	6.7.	Mecanismos de aumentar a resistência à fadiga	150

7.	FLU	ÊNCIA	153						
	7.1. 7.2.	Introdução Curva de fluência 7.2.1. Taxa de deformação na fluência secundária 7.2.2. Tempo de rotura							
	7.3. 7.4.	Métodos de extrapolação Mecanismos de fluência 7.4.1. Subida das deslocações (power-law) 7.4.2. Fluência por difusão 7.4.3. Fluência de polímeros	160 161 162 164 165						
	7.5. 7.6.	Rotura por fluência Mecanismos para aumentar a resistência à fluência							
8.	AÇOS								
•••	8.1. 8.2. 8.3.	Introdução Formas alotrópicas do ferro Diagrama de equilíbrio ferro-carbono 8.3.1. Constituição no estado recozido 8.3.2. Influência da velocidade de arrefecimento nos pontos de transformação e na microestrutura 8.3.2.1. Pontos de transformação 8.3.2.1. Microestrutura dos aços	171 171 174 174 176 176 178						
		 8.3.3. Relações entre a microestrutura e as propriedades mecânicas: caso dos aços ferrito-perlíticos 8.4.1. Transformação bainítica 	179 183						

	8.4.2.	Transformação martensítica								
8.5.	Diagramas TTT (tempo, temperatura, transformação)									
	8.5.1.	Transformações com difusão								
	8.5.2.	Transformação sem difusão ou martensítica								
	8.5.3.	Diagrama de transformação isotérmica								

8.5.4. Diagrama de transformação contínua

8.5.5. Aços ligados 8.5.5.1. Transformação eutetoide 8.5.5.2. Temperaturas de transformação 8.5.5.3. Efeito do gamageno e alfageno 8.5.5.4. Natureza dos carbonetos 8.5.5.5. Aços de construção ligados 8.5.5.6. Aços inoxidáveis 8.6 Tratamentos dos aços 8.6.1. Tratamentos térmicos 8.6.1. Berozido

8.6.1.1.	Recozido	199
8.6.1.2.	Recozido ou recozido completo	199
8.6.1.3.	Recozido de normalização	200
8.6.1.4.	Recozido de amaciamento ou de globulização	201
8.6.1.5.	Têmpera	202
	8.6.1.5.1. Martêmpera	206
	8.6.1.5.2. Têmpera Bainítica ou Austêmpera	206

			8.6.1.6.	Temperab	ilidade	207				
				8.6.1.6.1. 8.6.1.6.2.	Fatores que influenciam a temperabilidade Meios para avaliar a temperabilidade	207 207				
			8.6.1.7.	Revenido		211				
			8.6.1.8.	Transform	ações das estruturas	211				
			8.6.1.9.	Evolução	das propriedades mecânicas	213				
		8.6.2.	Tratame	ntos supe	rficiais	213				
			8.6.2.1.	lêmpera s	superficial	214				
			8.6.2.1. 8.6.2.3.	Nitruração))	214				
	8.7.	Aços d	e alta resi	istência		215				
9.	FER	ROS I	FUNDI	DOS		217				
	9.1.	Introd	ucão			219				
	9.2.	Ferros	fundidos	brancos		220				
		9.2.1.	Ligas hip	oeutética	S	221				
		9.2.2.	Ligas hip	pereutética	as	223				
		9.2.3.	Aplicaçõ	es		224				
	9.3.	Ferros	fundidos	cinzentos	5	225				
		9.3.1.	Compos	ição		225				
		9.3.2.	Processo	o de arrefe	cimento	227				
		9.3.3.	Morfolog	gia da grat	fite	228				
			9.3.3.1.	Grafite tip	0 A	229				
			9.3.3.2.	Grafite tip	o B	229				
			9.3.3.3.	Grafite tip		229				
			9.3.3.4. 9.3.3.5.	Grafite tip	οE	230				
		9.3.4.	Aplicaçõ	es		230				
	9.4.	Ferros fundidos dúcteis								
		9.4.1.	Processo	de obten	ção da grafite nodular	232				
			9.4.1.1.	Adição de	magnésio	232				
			9.4.1.2.	Inoculaçã	0	233				
		9.4.2.	Aplicaçõ	es		233				
	9.5.	Ferros fundidos maleáveis								
		9.5.1.	Processo	de malea	bilização	234				
			9.5.1.1. 9.5.1.2.	Ferro func Ferro func	lido maleável de coração branco (processo Europeu) lido maleável de coração negro (processo Americano)	234 234				
		9.5.2.	Aplicaçõ	es		235				
	9.6.	Sumár	io de prop	oriedades I	necânicas e aplicações de diferentes ferros fundidos	236				
10.	LIG	AS NÃ		ROSA	S	237				
	10.1	Introd				220				
	10.1.	Διυπύ	nio			239				
		10.2.1	. Ligas tra	balhadas	de alumínio	242				
					-					

10.2.2. Ligas vazadas de alumínio

10.3.	Cobre 10.3.1. Latões 10.3.2. Bronzes 10.3.3. Ligas de memória de forma	248 249 252 254
10.4.	Magnésio 10.4.1. Ligas de magnésio	256 257
10.5.	Titânio 10.5.1. Ligas de titânio	258 259
10.6.	Níquel 10.6.1. Ligas de níquel 10.6.1.1. Monel 10.6.1.2. Inconel 10.6.1.3. Outras superligas de níquel	261 261 262 262 263
10.7.	Zinco 10.7.1. Ligas de zinco 10.7.1.1. Zamak 10.7.1.2. Kayem 10.7.1.3. Illzro	264 265 265 266 266
CER	ÂMICOS	267
11.1. 11.2.	Introdução Classificação De Cerâmicos 11.2.1. Cerâmicos Tradicionais 11.2.2. Cerâmicos Técnicos 11.2.3. Vidros	269 269 270 270 271
11.3.	Estrutura dos cerâmicos 11.3.1. Cerâmicos iónicos 11.3.2. Cerâmicos covalentes 11.3.3. Cerâmicos iónicos-covalentes (mistos) 11.3.4. Vidros	272 273 274 275 276
11.4.	Propriedades mecânicas dos cerâmicos 11.4.1. Módulo de elasticidade 11.4.2. Dureza e resistência 11.4.3. Resistência à fratura dos cerâmicos 11.4.4. Fluência de materiais cerâmicos	277 277 277 278 279
11.5.	Fabricação e processamento de cerâmicos11.5.1. Preparação das matérias primas11.5.2. Conformação11.5.2.1. Conformação manual11.5.2.2. Prensagem unidirecional a frio (de pó ou pasta)11.5.2.3. Prensagem unidirecional a frio11.5.2.4. Prensagem unidirecional a quente11.5.2.5. Prensagem unidirecional a quente11.5.2.6. Vazamento de uma barbotina11.5.2.7. Extrusão	279 280 281 281 282 283 283 283 284 285

11.

		11.5.3.	Tratame	nto térmico	286
			11.5.3.1.	Cozedura	286
			11.5.3.2.	Sinterização no estado sólido	286
		11.5.4.	Processo	de fabrico de vidros	288
			11.5.4.1.	Prensagem	288
			11.5.4.2.	Moldação por sopro	288
			11.5.4.3.	Fabrico de vidro plano	289
			11.5.4.4.	Fabrico de vidro temperado	289
12		ÍMED	05		201
14.			00		291
	12.1.	Introdu	içao 	límene	293
	12.2.	Estrutu	ira dos po	himeros	295
		12.2.1.	Escala		295
		12.2.2.	Estrutura		296
		12.2.3.	Iempera	tura de transição vitrea	298
	12.3.	Tipos d	le políme	ros	300
		12.3.1.	Termopla	ásticos	301
			12.3.1.1.	Termoplásticos baseados em estireno	301
			12.3.1.2.	Termoplásticos vinílicos	304
			12.3.1.3.	Outros termoplásticos amorfos	305
			12.3.1.4.	Poliolefinas	306
			12.3.1.5.	Outros termoplásticos sem-cristalinos	308
			12.3.1.6.	Termoplásticos de flúor	310
		12.3.2.	Termoen	Idurecíveis	311
		12.3.3.	Elastóme	eros	318
	12.4.	Fabrica	ição e pro	ocessamento de polímeros	322
		12.4.1.	Processo	os de fabricação de polímeros termoplásticos	322
			12.4.1.1.	Extrusão	322
			12.4.1.2.	Moldação por injeção	323
			12.4.1.3.	Moldação por sopro	324
			12.4.1.4.	Fabrico aditivo	325
		12.4.2.	Processo	os de fabricação de polímeros termoendurecíveis	325
			12.4.2.1.	Moldação por injeção	326
			12.4.2.2.	Moldação por compressão	326
			12.4.2.3.	Moldação por transferência de resina	326
			12.4.2.4.	Fabrico aditivo	327
		12.4.3.	Processo	os de fabricação de elastómeros	328
			12.4.3.1.	Vulcanização	328
	12.5.	Proprie	adades m	ecânicas de polímeros	329
		12.5.1.	Compara	ação do comportamento mecânico dos polímeros com outros	
			materiai	s de construção mecânica	329
		12.5.2.	Processo	os de deformação plástica em polímeros	330
		12.5.3.	Mecanis	mos de endurecimento de polímeros	331
		12.5.4.	Mecanis	mos de rotura	332
			12.5.4.1.	Estiramento a frio	333
			12.5.4.2.	Crazing	333
			12.5.4.3.	Formação de bandas de corte	334
			12.5.4.4.	Fluência	334

13.	CON	MPÓSITOS		337
	13.1. 13.2.	Introdução Reforços e matr 13.2.1. Reforços 13.2.1.1. 13.2.1.2. 13.2.1.3. 13.2.1.4.	339 340 341 341 342 343 343	
		13.2.2. Matriz 13.2.2.1. 13.2.2.2. 13.2.2.3.	Matriz polimérica Matriz metálica Matriz cerâmica	344 344 345 345
		13.2.3. Semi-pro 13.2.3.1. 13.2.3.2. 13.2.3.3. 13.2.3.4.	odutos Compostos de moldação Pré-impregnados Pré-formas Termoplásticos reforçados por fibras	346 346 348 348
	13.3.	Fabricação 13.3.1. Matriz p 13.3.1.1. 13.3.1.2. 13.3.1.3. 13.3.1.4.	olimérica Impregnação de resina líquida Consolidação de pré-impregnados Consolidação de compostos de moldação Fabrico aditivo	349 349 352 353 354
		13.3.2. Matriz m 13.3.2.1. 13.3.2.2. 13.3.2.3. 13.3.2.4. 13.3.2.5. 13.3.2.6. 13.3.2.7.	netálica Técnicas no estado líquido Técnicas no estado sólido Técnicas por deposição Infiltração química em fase vapor Infiltração no estado líquido Sol-gel Oxidação direta	354 355 355 356 356 357 357 357
	13.4.	Compósitos refo	357	
	13.5.	Compósitos refo	orçados com partículas	363
	13.6.	Outros compósi 13.6.1. Madeira 13.6.2. Compós 13.6.3. Estrutura	363 363 365 368	
В	BIBLIC	OGRAFIA E	REFERÊNCIAS	CCCLXXI
í	NDIC	E DE FIGUR	AS E TABELAS	CCCLXXVII

PREFÁCIO

O estudo dos materiais de engenharia é cada vez mais elaborado e multidisciplinar. É uma área científica muito dinâmica com inovações que transcendem o imaginário. É o caso por exemplo dos inovadores *chips* fabricados em papel ou das mais antigas ligas de memória de forma. É uma área de conhecimento que está em constante evolução e que permite à humanidade cada vez mais conforto. A parte da sustentabilidade é também uma questão essencial, mas felizmente abundam os exemplos de ideias promissoras de reciclagem, como o descobrimento de uma enzima natural por cientistas japoneses que em 50 anos alterou o seu comportamento para incluir plásticos na sua dieta.

Este livro não pretende apresentar as últimas novidades sobre materiais, mas ser uma primeira introdução que permita ter uma noção dos fundamentos teóricos e das aplicações dos principais materiais de engenharia. A apresentação é muito simples e objetiva com imagens e esquemas explicativos. A conceito do livro é, para além obviamente de formar, despertar a curiosidade e o interesse dos estudantes universitários.

Na primeira parte da obra sobre ciência dos materiais, pretende-se explicar como a microestrutura de um material condiciona o seu comportamento mecânico. Representa os primeiros sete capítulos abordando os temas da estrutura cristalina, diagramas de fases, deformação plástica, mecanismos de endurecimento, mecânica da fratura, fadiga e fluência. A segunda parte é mais aplicada e apresenta os principais materiais de engenharia, como o aço, ferros fundidos, ligas não ferrosas, cerâmicos, polímeros e compósitos. São apresentadas as principais propriedades mecânicas e aplicações com imagens muito sugestivas.

O público-alvo são estudantes universitários, especialmente dos cursos que necessitam de uma abordagem não muito aprofundada dos materiais de engenharia como gestão industrial, química, design, etc.

Os autores agradecem ao Eng. Fernando Sousa, Eng. Francisco Tenreiro, Eng. Paulo Nunes e Eng. Mateus dos Reis pela preparação de muitas imagens. Os autores agradecem também o apoio incondicional da Quântica Editora.

> Os autores Ricardo J. C. Carbas Eduardo A. S. Marques Catarina S. P. Borges Lucas F. M. da Silva

1. ESTRUTURA DOS MATERIAIS

1.1. INTRODUÇÃO

O capítulo inicial deste livro tem como objetivo explicar como as diferentes classes de materiais e algumas das suas propriedades fundamentais são altamente dependentes da estrutura atómica dos mesmos. Neste sentido, são descritos em detalhe os diversos tipos de ligações atómicas que podem se encontrar assim como as estruturas de empilhamento dos átomos, com especial enfoque nas estruturas cristalinas típicas de materiais metálicos. São também abordadas as estruturas cristalinas de materiais cerâmicos e a estrutura particular dos materiais poliméricos.

1.2. CLASSES DE MATERIAIS

Os materiais que são tipicamente usados em engenharia e construção encontram-se divididos em quatro grandes classes. Estes são os metais, polímeros, cerâmicos e compósitos, conforme ilustrado na Figura 1.1.

Figura 1.1. Classes de materiais e alguns exemplos.

Os metais são dos materiais mais importantes em aplicações de engenharia, fruto das suas excelentes propriedades mecânicas. Entre os metais mais comuns contam-se o ferro, alumínio, titânio, níquel, cobre entre muitos outros. Estes podem surgir no seu estado puro, mas mais habitualmente surgem sob a forma de ligas, que usualmente apresentam desempenho muito superior.

Em complemento aos metais, encontramos os polímeros. Embora sejam menos resistentes e rígidos que os metais, os polímeros são baratos, fáceis de processar e muito leves, o que os torna excecionalmente adequados para aplicações não estruturais. Entre os materiais poliméricos com uso mais alargado contam-se, por exemplo, o polietileno, policarbonato, polipropileno e o policloreto de vinilo. A deformação normal (na direção perpendicular à secção resistente) é representada pelo símbolo grego $\boldsymbol{\varepsilon}$. Com a Equação 1.2 obtém-se a deformação sofrida por um dado material, sendo esta obtida pelo alongamento (Δl), ou variação do comprimento, dividido pelo comprimento inicial (l_0). O alongamento, por sua vez, é dado pela diferença entre o comprimento num dado instante, l, e o comprimento inicial l_0 . A deformação é, um conceito adimensional, sendo a razão entre dois comprimentos.

1.4.3. Coeficiente de Poisson

O conceito da deformação possibilita analisar o comportamento de um material de forma mais detalhada e permite determinar o coeficiente de Poisson do mesmo. Conforme mostrado acima, quando uma barra é sujeita a uma força de tração ocorre deformação longitudinal (aumento de Δl) mas esta é acompanhada de deformação transversal (contração ao longo da largura da barra Δb e ao longo da espessura Δd). Isto ocorre porque a continuidade do material tem de ser assegurada, se o material expande numa direção, terá necessariamente de contrair nas direções perpendiculares a esta. Em três dimensões, a deformação transversal atua segundo os eixos *y* e *z* conforme ilustrado na Figura 1.7., podendo estas deformações ser calculadas pelas expressões da Equação 1.3.

Figura 1.7. Deformação transversal de um sólido.

O coeficiente de Poisson é representado pelo símbolo v e é obtido pela Equação 1.4. Em que ε_x é a deformação longitudinal ($\Delta l/l$) e ε_y e ε_z são as deformações transversais que

		G1 H 1.0079 3 Li 6.941 11 Na	G2 4 9.0122 12 Mg		Me Não Inte	tal o metal ermédic)	1 – Número atómico H – Massa atómica relativa						G13 5 B 10.811 13 AI	G14 6 C 12.011 14 Si	G15 7 N 14.007 15 P	G16 8 0 14.007 16 5	G17 9 F 18.998 17 CI	G18 5 He 4.0026 10 Ne 20.180 18 Ar	↓ Gases nobres
Metais alcalinos	<-	22.990 19 K 39.098 37 Rb	24.305 20 Ca 40.078 38 Sr	21 Sc 44.956 39 Y	22 Ti 47.867 40 Zr	23 V 50.942 41 Nb	24 Cr 51.996 42 Mo	25 Mn 54.938 43 Tc	26 Fe 55.933 44 Ru	27 Co 58.693 45 Rh	28 Ni 58.693 46 Pd	29 Cu 63.546 47 Ag	30 Zn 65.38 48 Cd	26.982 31 Ga 69.723 49 In	28.086 32 Ge 72.64 50 Sn 119.71	30.974 33 As 74.922 51 Sb 121.76	32.065 34 Se 78.96 52 Te 127.60	35,453 35 Br 79,904 53 I	39,948 36 Kr 83,798 54 Xe	
		85.468 55 Cs 132.91 87 Fr [223]	87.62 56 Ba 137.33 88 Ra [226]	57-71 89-103	91.224 72 Hf 178.49 104 Rf [261]	92.906 73 Ha 180.95 105 Db [262]	95.96 74 W 183.84 106 Sg [266]	[98] 75 Re 186.21 107 Bh [264]	101.07 76 Os 190.23 108 Hs [277]	102.91 77 1r 192.22 109 Mt [268]	106.42 78 Pt 195.08 110 Ds [271]	10/.87 79 Au 196.97 111 Rg [272]	112.41 80 Hg 200.59 112 Cn [272]	114.82 81 TI 204.38 113 Nh [272]	118./1 82 Pb 207.20 114 Fl [272]	121./6 83 Bi 208.98 115 Mc [272]	127.60 84 Po [209] 116 Lv [272]	126.90 85 At [210] 117 Ts [272]	131.29 R 86 Rn [222] 118 Og [272]	
	Metais alcalinos-terrosos			57 La 138.91 89 Ac [227]	58 Ce 140.12 90 Th [232.04]	59 Pr 140.91 91 Pa 231.04	60 Nd 144.24 92 U 238.03	61 Pm [145] 93 Np [237]	62 Sm 150.36 95 Pu [244]	63 Eu 151.96 95 Am [243]	64 Gd 157.25 96 Cm [247]	65 Tb 158.93 97 Bk [247]	66 Dy 162.50 98 Cf [251]	67 Ho 164.93 99 Es [252]	68 Er 167.26 100 Fm [257]	69 Tm 168.93 101 Md [258]	79 Yb 173.05 102 No [259]	71 Lu 174.97 103 Lr [262]	∀ Halogéneos	

Figura 1.13	. Tabela	periódica.
-------------	----------	------------

À medida que aumenta o número atómico, os níveis de energia vão sendo preenchidos segundo a ordem 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4s, 4p, 5s, 4d, 5p, 6s, 4f, etc..

O ponto mais importante para compreender os diferentes tipos de ligações consiste no facto de os átomos mais estáveis serem aqueles que têm a sua sub-camada de eletrões mais afastada do núcleo (camada periférica) completamente preenchida. Um exemplo de elementos que têm essa camada saturada são os gases nobres como o hélio, néon e árgon. Estes elementos são muito pouco reativos e dificilmente formam ligações químicas duradouras. Outros elementos podem adquirir essa estrutura estável ao formarem ligações químicas, que envolvem a perda de eletrões para os metais (Mg, Al, Fe, etc.), ou o ganho de eletrões para os não metais (Cl, O, etc.).

Estas ligações químicas podem ser classificadas como ligações primárias (também designadas por ligações químicas ou fortes) que incluem as ligações iónicas, metálicas e covalentes, ou ligações secundárias (também designadas por físicas ou fracas) que incluem as ligações de van der Waals e de hidrogénio. Os cerâmicos e os metais contêm exclusivamente ligações primárias, o que lhes confere alta rigidez e resistência, enquanto que os polímeros contêm ligações primárias e secundárias, que resultam num menor desempenho mecânico.

1.5.1. Ligação iónica

As ligações iónicas são estabelecidas entre elementos muito eletropositivos, como o caso dos metais, e muito eletronegativos, como o caso dos não metais. Nesta ligação, o átomo eletropositivo cede um ou mais eletrões ao átomo eletronegativo, o que produz iões de cargas opostas. As forças de ligação resultam da atração eletrostática entre os iões, como ilustrado na Figura 1.14. para o caso do cloreto de sódio.

Figura 1.26. Exemplo de um plano cristalográfico.

Um índice negativo é representado por uma barra sobre o valor do índice. Para sistemas de elevada simetria, existem direções que são fisicamente equivalentes (apresentam a mesma densidade atómica linear ou planar, no caso das direções ou planos, respetivamente). Assim sendo, o conjunto de famílias para as direções é designado por $\langle u v w \rangle$ onde u, v, w são os índices de um dos representantes do conjunto. No caso dos planos é designado por {h k l}.

No sistema cúbico, qualquer direção [u v w] é perpendicular ao plano com os mesmos índices de Miller.

Na Figura 1.27. e a Figura 1.28. encontram-se alguns exemplos de direções e planos cristalográficos, respetivamente, no sistema cúbico.

Figura 1.27. Exemplos de diferentes direções cristalográficas no sistema cúbico.

Figura 1.28. Exemplos de diferentes planos cristalográficos no sistema cúbico.

isotérmicas possíveis. Encontram-se definidas as transformações eutéticas ou eutétoides, peritéticas ou peritetoides, monotéticas ou monotetoides. Pode ainda notar-se que:

- se na transformação existir uma fase líquida, o nome acaba em 'ica';
- se na transformação existirem apenas fases sólidas, o nome acaba em 'oide'.

Transformação eutética φ 1 e φ 3 sólidos φ 2 líquido Transformação eutétoide φ 1, φ 2 e φ 3 sólidos

Transformação monotética φ1 sólidos φ2 e φ3 líquido Transformação monotetoide φ1, φ2 e φ3 sólidos

Figura 2.14. Diferentes tipos de transformações isotérmicas.

2.8. REAÇÃO EUTÉTICA

Das reações apresentadas na Figura 2.14. as transformações eutéticas e eutetoides são das transformações mais estudadas e estão presentes em muitos diagramas binários (Fe-C, Al-Si, Cu-Zn, Cu-Ag, etc.). Na Figura 2.15. está ilustrado um diagrama genérico com dois elementos A e B, que apresenta três domínios monofásicos: líquido *I*, solução sólida primária α de B em A e a solução sólida primária β de A em B. À temperatura T_{ε} (temperatura eutética) todas as ligas tais que $x(C_1) \le X \le x(C_2)$ são trifásicas e constituídas pelas três fases α (C₁), *I* (E), β (C₂). A reação eutética é descrita por:

$$L(quido (E) \rightleftharpoons \alpha (C_1) + \beta (C_2)$$
(2.16)

Para materiais dúcteis a área abaixo da curva é aproximada pela área de um retângulo com altura entre a tensão limite de elasticidade e a tensão de rotura e base igual à deformação no ponto de rotura, Figura 3.19.a:

$$U_{\tau} = \frac{\sigma_r + \sigma_e}{2} \varepsilon_f \tag{3.14}$$

Para materiais frágeis a área abaixo da curva é aproximada pela área de um retângulo com altura igual a 2/3 da tensão de rotura e base igual à deformação no ponto de rotura, Figura 3.19.b:

$$J_T = \frac{2}{3} \sigma_r \varepsilon_f \tag{3.15}$$

Figura 3.19. Representação gráfica da tenacidade e aproximação para a determinação do módulo de tenacidade para materiais dúcteis a) e frágeis b).

3.2.5. Ensaio de dureza

Os ensaios de dureza podem também ser utilizados para a caracterização de materiais, com a vantagem de serem muito simples e pouco destrutivos. A dureza caracteriza a resistência de um material à deformação, e os ensaios realizados para medir a dureza realizam-se por penetração. De um modo geral, um teste de dureza pode ser definido pela penetração com uma carga constante de um dado penetrado, no material e análise da impressão por ele deixada. Esta impressão será tanto menor quanto mais duro for o material. A dureza, H, é proporcional à relação entre a carga aplicada, *F*, e a área da impressão, *A*:

$$H = \frac{F}{A}$$
(3.16)

O valor obtido neste teste está intrinsecamente ligado à metodologia de teste utilizada. Por este motivo, apesar de ser possível exprimir-se a dureza em MPa, os números de dureza são expressos sem dimensão, com indicação da convenção de teste adotada. Existem diversas metodologias normalizadas para a realização destes ensaios, sendo as mais comuns Vickers, Brinell e Rockwell. A passagem de uma deslocação por uma 'linha' de precipitados só se pode dar com um encurvamento da deslocação entre as partículas, Figura 4.1., o que exige uma tensão suplementar.

Figura 4.1. Movimento da deslocação na presença de precipitados.

Se um precipitado tiver a mesma estrutura que a matriz e apresentar uma continuidade dos planos cristalinos é considerado de precipitado coerente. O precipitado coerente tem uma interação mais marcada do que um precipitado incoerente oferecendo mais resistência à propagação de uma deslocação. Um precipitado incoerente tem uma estrutura diferente da matriz, Figura 4.2. Na Figura 4.3. pode-se notar que existe um tamanho limite abaixo do qual a eficácia tende a diminuir, uma partícula de grande tamanho (fenómeno de coalescência) não tem qualquer eficácia.

Figura 4.2. Precipitados coerentes a) e incoerentes b).

são menos sensíveis à temperatura, pois apresentam sistemas de fácil deslizamento que são difíceis de restringir.

Em materiais frágeis, a rotura pode ocorrer sem deformação plástica e segundo planos cristalográficos bem definidos, chamados de planos de clivagem. Estas roturas são chamadas de transgranulares, pois os planos de clivagem atravessam os grãos dos materiais, conforme ilustrado na Figura 5.16.

Figura 5.16. Rotura frágil de um metal através de planos de clivagem representada esquematicamente **a**) e em imagem real **b**).

A superfície de fratura é, genericamente, lisa e brilhante, como a apresentada na fratura frágil do ensaio Charpy na Figura 5.3., sendo que, a interação da fissura com os defeitos estruturais ou heterogeneidades do metal conduz a microrelevos muito característicos chamados riverlines e twins, representados na Figura 5.16.

Num metal que solidifica desde o estado líquido, os grãos serão gerados de pequenos cristais sólidos, os germes, que vão crescer de forma desimpedida até que se encontram nas juntas de grão. Uma vez que estas juntas de grão correspondem às últimas regiões de solidificação, acabam por concentrar uma grande parte das impurezas presentes no metal líquido. Isto resulta numa rede frágil que rodeia os grãos tenazes. Nestes casos, o material é especialmente suscetível a uma rotura frágil completamente intergranular. A Figura 5.17. mostra esquematicamente este processo e o aspeto microscópico de uma superfície de rotura deste tipo.

Figura 5.17. Rotura frágil de um metal através de falha intergranular.

A composição química diferente nas juntas de grão pode causar outros problemas como a corrosão que gera fendas num material inicialmente livre de defeitos. Fratura frágil pode também ocorrer à temperatura ambiente, para materiais normalmente dúcteis, como os

Figura 7.12. Difusão de átomos que permitem a subida de uma deslocação.

Figura 7.13. Subida de deslocações que permite a passagem por um precipitado.

Este comportamento é cíclico, repetindo-se para cada vez que uma deslocação se depara com um obstáculo, podendo esse obstáculo ser outra deslocação. É este avanço progressivo que origina o comportamento progressivo da deformação por fluência.

O coeficiente de difusão é dado por (o fenómeno de difusão está exposto com maior detalhe no Capítulo 2 sobre diagramas de fases):

$$D = -D_0 \exp\left(\frac{-Q}{RT}\right) \tag{7.5}$$

O que explica que a taxa de deformação, $\dot{\varepsilon}$ pode ser relacionada com a temperatura através de:

$$\dot{\varepsilon} = A\sigma^n \exp\left(\frac{-Q}{RT}\right) \tag{7.6}$$

Em que σ é a tensão devida à força de subida exercida sobre a deslocação. Assim, quanto maior essa força, mais obstáculos à progressão das deslocações serão removidos em cada intervalo de tempo e maior será a taxa de deformação. Deve ainda ser notado que a forma da Equação 7.6 é em tudo semelhante à Equação 7.1, fazendo $B = A \exp\left(\frac{-Q}{pT}\right)$.

tável é usado para descrever a constituição dos aços não ligados no estado recozido, como ilustrado na Figura 8.7.

Figura 8.7. Constituição dos aços no estado recozido.

Todas as ligas ferrosas contêm em proporções variáveis do constituinte eutetoide, perlite, com exceção para os aços com menos de 0,03%C. A perlite é um agregado eutetoide obtido pela transformação isotérmica da austenite γ segundo:

$$\gamma(0,86\%C) \underset{_{723\degreeC}}{\leftarrow} \underbrace{\text{Fe}_{3}C + \alpha(0,03\%C)}_{\text{Perlite}}$$
(8.1)

Para a temperatura de 723°C e para todas as ligas com %C > 0,03%, a austenite apresenta o mesmo teor em carbono (0,86%), e no arrefecimento vai transformar-se em perlite. A perlite é um constituinte bifásico, composto por ferrite α e cementite. As frações mássicas de cada são determinados por:

$$\frac{\text{massa Fe}_{3}\text{C eut}}{\text{massa perlite}} = \frac{0,86 - 0,03}{6,67 - 0,03} = 0,13; \frac{\text{massa } \alpha \text{ eut}}{\text{massa perlite}} = 0,87$$
(8.2)

O agregado é em geral lamelar. É formado por lamelas alternadas de Fe₃C e de α . A cementite é a primeira fase a sofrer nucleação nas juntas de grão da fase γ -mãe, energeticamente mais favorável. Na região adjacente à formação de cementite há um empobrecimento relativo em carbono, formando-se ferrite. Por sua vez, nas regiões adjacentes à ferrite haverá uma região mais rica em carbono que não consegue ser dissolvido nesta fase, promovendo a formação de cementite. Assim, pode compreender-se que a germinação de uma das fases promove a germinação da outra fase na região adjacente, e que o crescimento de uma das fases contribui para o crescimento da outra fase. Ou seja, pode dizer-se que a fase nucleante é a cementite, a germinação é recíproca e faz-se a partir das juntas de grão da fase γ -mãe, fazendo intervir a difusão do carbono, Figura 8.8.

as ligas hipoeutéticas e as ligas hipereutéticas. As primeiras têm teores de carbono entre 2,06 e 4,3% e as segundas entre 4,3 e 6,67%.

Figura 9.2. Diagrama Fe-C metaestável. A zona marcada a cinzento marca o intervalo que origina ferros fundidos.

9.2.1. Ligas hipoeutéticas

As ligas hipoeutéticas têm concentrações de carbono entre 2,06 e 4,3%. Considere-se a liga representada na Figura 9.3. pelos pontos A_i.

Figura 9.3. Diagrama Fe-C metaestável com liga hipoeutética assinalada.

A temperatura de vazamento da liga é ainda no estado líquido, A₀. Posteriormente, à medida que ocorre o arrefecimento, os primeiros cristais sólidos de austenite aparecem à temperatura A₁, que representa então o início da solidificação. No domínio $l + \gamma$ estes cristais continuam a desenvolver-se, geralmente sob a forma dendrítica, até que é atingida a temperatura da transformação eutética a 1148 °C, representada pelo ponto A₂. Neste processo de solidificação a difusão tanto no estado sólido como no estado líquido é consideravelmente rápida devido à alta temperatura do domínio. Imediatamente antes do ponto

As principais ligas de cobre são o latão (cobre ligado com zinco) e o bronze (cobre ligado com estanho). Existem também outras ligas de cobre com características muito peculiares, das quais são o principal exemplo as ligas de memória de forma.

10.3.1. Latões

Os latões são ligas de cobre e zinco, em que o conteúdo de zinco pode variar entre 5 e 45%. São fundamentalmente ligas trabalhadas, facilmente estampadas, embutidos ou maquinadas, embora algumas variantes sejam também adequadas para uso em processos de fundição. Possuem uma cor que vai do rosado ao amarelo (dependente do teor de zinco), boa resistência à corrosão e respondem bem a tratamentos de superfície. Estas características levam a que os latões sejam muitas vezes utilizados para a produção de peças decorativas onde a componente estética é altamente valorizada. Podem ser fundidos, trabalhados a frio ou a quente, segundo a sua composição.

De forma geral, os diagramas de equilíbrio de cobre-X (em que X poderá ser zinco, estanho ou alumínio) apresentam todos soluções sólidas de três tipos, conforme mostrado na Tabela 10.5.

Percentagem crescente de elemento de liga (%X) ↓	Solução sólida α	Estrutura CFC	Maleável	-
	Solução sólida α	Estrutura CCC	Maleável	CuZn Cu₅Sn Cu₃Al
	Solução sólida $\boldsymbol{\beta}$	Estrutura cúbica (52 átomos por malha)	Muito frágil	Cu₅Zn Cu₄Sn Cu₃Al

O diagrama de equilíbrio cobre-zinco típico dos latões está representado na Figura 10.11.

Existem dois tipos principais de latões simples, dependendo das fases que incluem. Estes são os latões α (até 33% de Zinco) com estrutura do tipo CFC e os latões $\alpha + \beta$ (de 33 a 45% de zinco), de estrutura CCC. A fase β , desordenada, ocorre apenas a temperaturas elevadas,

Figura 11.13. Vela de ignição de um automóvel fabricada por prensagem isostática a frio.

11.5.2.4. Prensagem unidirecional a quente

A prensagem unidirecional a quente, Figura 11.14., é uma variante do método de prensagem unidirecional em que aplicação de temperatura e pressão ocorrem de forma simultânea durante o processo de fabrico. As altas temperaturas utilizadas neste processo permitem que o cerâmico seja processado a pressões muito superiores àquelas que são possíveis à temperatura ambiente, dando origem a materiais cerâmicos com densidades relativas mais elevadas, com poucos defeitos e propriedades mecânicas significativamente melhoradas. No entanto, este tipo de equipamento é complexo e muito mais caro que um sistema de prensagem e frio e apresenta as mesmas limitações em termos de geometrias que podem ser obtidas, o que limita o seu uso a peças simples e de pequena dimensão.

11.5.2.5. Prensagem isostática a quente

Neste processo, o cerâmico (em pré-forma ou em pó) é colocado num forno selado e preenchido com um gás a temperatura elevada. As peças são sujeitas a uma pressão isostática que compacta a matéria prima em todas as direções. Novamente, o uso da temperatura elevada permite que esta compactação seja feita de forma muito eficiente. Note-se que este processo requer um método que permita selar a superfície exterior da peça, caso contrário o gás a alta pressão poderá facilmente penetrar pelos inúmeros poros que existem na peça no início do processo, causando defeitos. Isto é conseguido recorrendo a uma encapsulação que pode ser feita com recurso a materiais metálicos, vidro ou outros

Figura 12.10. Pico de amortecimento existente na região de transição vítrea a) e representação esquemática de um sistema de medição de T_a baseado na análise dinâmica b).

Exemplos de valores típicos de T_g de diversos polímeros são mostrados na Tabela 12.1. Note-se que existem diversos materiais poliméricos cuja T_g é negativa, o que significa que à temperatura ambiente se encontram na fase mais flexível. Este é o caso dos elastómeros, materiais extremamente flexíveis vulgarmente conhecidos como borrachas.

Tabela 12.1. Valores típicos de temperatura de transição vítrea de alguns de alguns polímeros.

Polímero	<i>T_g</i> (°C)
Policloreto de vinilo (PVC)	75
Polipropileno (PP) atático	- 20
Polipropileno (PP) isotático	0
Polietileno (PE) de baixa densidade	- 30
Polietileno (PE) de alta densidade	- 100
Poliestireno (PS)	100
Polimetacrilato de metilo	105
Policarbonato (PC)	150
Borracha natural (NR)	- 75
Borracha de silicone (NR)	- 120

12.3. TIPOS DE POLÍMEROS

Os polímeros são usualmente divididos em três grandes categorias: os termoplásticos, termoendurecíveis e os elastómeros. Estes três tipos de polímeros diferem significativamente no seu comportamento mecânico, no tipo de processamento necessário, nas suas características físicas e químicas e nas suas aplicações. De uma forma geral, os termoplásticos apresentam cadeias poliméricas longas e com ramificações ocasionais, sendo amorfos ou semi-cristalinos. Uma vez que não existem ligações covalentes entre as cadeias podem ser fundidos e reutilizados com relativa facilidade. Um exemplo de um termoplástico muito utilizado é o polietileno. Já os termoendurecíveis apresentam uma rede tridimensional altamente reticulada com muitas ligações covalentes entre as cadeias. Esta rede não permite Já os termoplásticos são materiais que se podem deformar elasticamente e plasticamente. No caso de solicitações a temperaturas abaixo da T_g encontramos uma deformação de natureza fundamentalmente elástica. Acima da T_g já existe uma grande contribuição da deformação plástica no desempenho mecânico do material.

12.5.4.1. Estiramento a frio

O mecanismo de estiramento a frio (*cold drawing*) é um processo que confere aos materiais termoplásticos excelentes propriedades mecânicas. Este processamento é obtido quando um material termoplástico é solicitado à tração a temperaturas próximas ou acima da *T_g*, forçando o alinhamento das cadeias poliméricas na direção do carregamento. O material resultante será mais resistente e rígido devido a esta orientação organizada das moléculas. As fibras poliméricas, utilizadas nas mais diversas aplicações como cablagens e têxteis são produzidas desta forma, garantindo elevadas resistência à tração. O processo de estiramento e forma como a reorientação das moléculas influencia o desempenho do material encontra-se explicado na Figura 12.58.

Figura 12.58. Processo de estricção de um polímero e a sua influência na curva tensão deformação.

12.5.4.2. Crazing

Um tipo de rotura muito específica que ocorre num polímero solicitado abaixo da T_g é o mecanismo de rotura por *crazing*. Neste fenómeno ocorre a formação de pequenas regiões com forma de fenda que se desenvolvem no material, Figura 12.59. Estas secções são chamadas de *crazes* e dispersam luz, conferindo um tom esbranquiçado aos plásticos quando estes são carregados e sofrem deformação plástica.

Figura 12.59. Representação esquemática do mecanismo de rotura por crazing.

Figura 13.27. Junta de sobreposição simples sem carga a), carregada b) e distribuição de tensões c).

Nestas juntas, a falha pode ocorrer no adesivo, na interface adesivo/substrato ou no substrato. Quando a falha ocorre no substrato, sendo este um material compósito, pode haver uma descoesão entre as fibras e a matriz, como pode ser observado na Figura 13.28.

Figura 13.28. Descoesão fibra/matriz num material compósito tensões atuantes a) e descoesão do material compósito b).

Isto normalmente é causado pelas tensões de arrancamento que podem surgir em ligações por juntas de sobreposição simples, conforme mostrado na Figura 13.27. Estas tensões atuam perpendicularmente à direção do plano de colagem e das fibras e sujeitam o material compósito na sua direção menos resistente. Nesta solicitação, a resistência interlaminar do compósito é apenas conferida pela resistência da matriz, sendo esta muito inferior à do material reforço. Como tal, é fundamental que as ligações adesivas de componentes compósitos sejam realizadas de forma a minimizar o aparecimento de tensões de arrancamento. Os materiais celulares podem ser usados como reforço distribuído na matriz de um material compósito ou podem ser usados para criar o núcleo de uma estrutura sandwich (descritas em detalhe na secção seguinte). Os materiais celulares podem também aplicados de forma isolada, onde a sua geometria lhes confere um desempenho mecânico muito peculiar.

A maioria dos materiais poliméricos podem ser obtidos na forma de espuma através da mistura de um agente expansivo com grânulos do polímero antes do processamento. Este agente liberta dióxido de carbono durante o ciclo térmico, criando bolhas de gás na peça final. A estrutura de uma espuma polimérica é constituída por células poliédricas, podendo ser abertas, Figura 13.31.a, como nas esponjas ou fechadas, Figura 13.31.b.

Figura 13.31. Espuma com células poliédricas abertas a) e fechadas b).

A curva tensão-deformação à compressão de uma espuma, Figura 13.32., pode ser dividida em três zonas distintas. A primeira zona, para deformações pequenas, corresponde a um comportamento linear elástico. Nesta zona há uma flexão e distorção das células. À medida que a deformação aumenta passa-se a um *plateau* de tensão para uma dada gama de deformações, que corresponde a uma encurvadura elástica das colunas ou placas das células ou à deformação plástica das mesmas. A parte final da curva representa um rápido aumento da tensão que corresponde à rotura das células.

Figura 13.32. Curva tensão-deformação à compressão de uma espuma.

TAMBÉM DISPONÍVEL

INTRODUÇÃO À CIÊNCIA E ENGENHARIA DOS MATERIAIS – PRÁTICA

LUCAS F. M. DA SILVA · EDUARDO A. S. MARQUES · RICARDO J. C. CARBAS · CATARINA S. P. BORGES · FERNANDO SOUSA

engebook

INTRODUÇÃO À CIÊNCIA E ENGENHARIA DOS MATERIAIS

RICARDO J. C. CARBAS EDUARDO A. S. MARQUES CATARINA S. P. BORGES LUCAS F. M. DA SILVA

Sobre a obra

O estudo dos materiais de engenharia é cada vez mais elaborado e multidisciplinar, constituindo uma área científica muito dinâmica e inovadora, e uma área de conhecimento em constante evolução, aliada à questão da sustentabilidade. Este livro não pretende apresentar as últimas novidades sobre materiais, mas ser uma primeira introdução que permita ter uma noção dos fundamentos teóricos e das aplicações dos principais materiais de engenharia, direcionando o interesse e a formação dos estudantes universitários. Os primeiros sete capítulos constituem uma primeira parte sobre ciência dos materiais, explicando como a microestrutura de um material condiciona o seu comportamento mecânico. Aborda os temas da estrutura cristalina, diagramas de fases, deformação plástica, mecanismos de endurecimento, mecânica da fratura, fadiga e fluência. Os restantes seis capítulos completam uma segunda parte, mais aplicada aos principais materiais de engenharia, como o aço, ferros fundidos, ligas não ferrosas, cerâmicos, polímeros e compósitos, sendo apresentadas as principais propriedades mecânicas e aplicações.

Sobre os autores

Eduardo A. S. Marques é Investigador contratado pós-doutoral no Instituto de Engenharia Mecânica e Gestão Industrial (INEGI) e docente convidado no Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade do Porto (FEUP). Obteve o seu doutoramento na área das ligações adesivas estruturais para aplicações aeroespaciais na FEUP, em 2016, dedicando-se agora a estudar o efeito de elevadas taxas de deformação, temperaturas extremas e elevada humidade relativa no comportamento de diversos materiais e estruturas coladas.

Ricardo J. C. Carbas é atualmente Investigador pós-doutoral na Unidade de Processos Avançados de Ligação (UPAL), uma unidade de investigação do Instituto de Engenharia Mecânica e Gestão Industrial (INEGI). Obteve doutoramento em juntas coladas funcionalmente graduadas, pela Faculdade de Engenharia da Universidade do Porto (FEUP), em 2013, e realiza regularmente trabalhos de consultoria para empresas nacionais e internacionais.

Catarina S. P. Borges é doutoranda em Engenharia Mecânica, desenvolvendo a sua investigação na área no projeto e durabilidade de juntas adesivas. Durante a sua tese de mestrado participou na concepção e desenvolvimento de um novo equipamento de ensaio para a caracterização à fractura de juntas adesivas sujeitas a taxas de deformação elevadas. É autora de diversos artigos de investigação neste campo.

Lucas F. M. da Silva é Professor Catedrático no Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade do Porto (FEUP) e editor-chefe do Journal of Materials Design and Applications (SAGE). É o diretor da Unidade de Processos Avançados de Adesão (AJPU) do Instituto de Engenharia Mecânica e Gestão Industrial (INEGI).

Apoio

Também disponível em formato e-book

engebcok