

ROBÓTICA INDUSTRIAL PARTE II PROGRAMAÇÃO AVANÇADA

> FILIPE PEREIRA JOSÉ MACHADO CARLOS FELGUEIRAS

engebcck

AUTORES FILIPE PEREIRA JOSÉ MACHADO CARLOS FELGUEIRAS

TÍTULO ROBÓTICA INDUSTRIAL PARTE II - PROGRAMAÇÃO AVANÇADA

COLEÇÃO AUTOMAÇÃO, ROBÓTICA E CONTROLO INDUSTRIAL - INDÚSTRIA 4.0

EDIÇÃO

Quântica Editora – Conteúdos Especializados, Lda. Praça da Corujeira n.º 38 · 4300-144 PORTO Tel: 220 939 053 · E-mail: geral@quanticaeditora.pt · www.quanticaeditora.pt

CHANCELA Engebook – Conteúdos de Engenharia

DISTRIBUIÇÃO Booki – distribuidora e livraria técnica Tel. 220 104 872 . Fax 220 104 871 . E-mail: info@booki.pt . www.booki.pt

PARCEIRO DE COMUNICAÇÃO Robótica - Revista Técnico-científica de Automação, Controlo e Instrumentação - www.robotica.pt

REVISÃO Quântica Editora – Conteúdos Especializados, Lda.

DESIGN Quântica Editora – Conteúdos Especializados, Lda.

APOIO Roboplan, Lda. - www.roboplan.pt

IMPRESSÃO Maio, 2024

DEPÓSITO LEGAL 504976/22

A **cópia ilegal** viola os direitos dos autores. Os prejudicados somos todos nós.

Copyright © 2024 | Todos os direitos reservados à Quântica Editora – Conteúdos Especializados, Lda. A reprodução desta obra, no todo ou em parte, por fotocópia ou qualquer outro meio, seja eletrónico, mecânico ou outros, sem prévia autorização escrita do Editor e do Autor, é ilícita e passível de procedimento judicial contra o infrator.

Este livro encontra-se em conformidade com o novo Acordo Ortográfico de 1990, respeitando as suas indicações genéricas e assumindo algumas opções especificas.

DOI https://doi.org/10.61875/9789899101425 681.2 Instrumentação 681.5 Engenharia de Controlo Automático. Tecnologia Inteligente. ISBN Papel: 9789899101425 E-book:9789899101432

Catalogação da publicação Família: Automação Industrial Subfamília: Automação Industrial

FILIPE PEREIRA JOSÉ MACHADO CARLOS FELGUEIRAS

ROBÓTICA INDUSTRIAL PARTE II PROGRAMAÇÃO AVANÇADA

engebook

ÍNDICE

Α	GRA	DECIMENTOS E DEDICATÓRIAS	XI
N	ΟΤΑ Ι	NTRODUTÓRIA	XIII
1.	JOE	3 (PROGRAMA)	15
	1.1.	Criação de programas	17
	1.1.1.	Inserindo o nome e comentário do programa	17
	1.1.2.	Seleção de pasta	18
	1.1.3.	Seleção do grupo de eixos	18
	1.1.4.	Seleção do tipo de programa	18
	1.1.5.	Criação do novo programa	19
	1.2.	Recuperação de programas ativos	19
	1.3.	Selecionar um programa	20
	1.4.	Exercícios	21
		1.4.1. Exercício 1	21
		1.4.2. Exercício 2	
		1.4.3. Exercício 3	23

2.1. 2.2. 2.3. 2.4. Execução sem movimento29 2.5. 2.6. Desativando todos os modos especiais29 2.7. 3.1. 3.2.

AGRADECIMENTOS

Em primeiro lugar, gostaríamos de agradecer ao Eng. Nuno Mineiro, ao Eng. José Miguel Rodrigues e ao Eng. Carlos Neves da empresa ROBOPLAN, não só pela aposta neste projeto, bem como na cedência pela cedência de informação. Aqui fica o nosso especial agradecimento, pois sem eles a obra não seria possível.

Gostaríamos também de agradecer ao ex-responsável de marketing, Dr. Ricardo Correia que tornou também possível a realização da obra bem apoio na edição desta obra bem como ao Dr. Gilberto Neves da direção de marketing da Roboplan.

Ainda da Roboplan, aos engenheiros técnicos Eng. Carlos Miguel e Eng. Nuno Miguel, agradecemos o apoio e a cedência de informação.

À Quântica Editora, em especial ao Eng. António Malheiro, pela sua generosidade, simpatia, empreendedorismo, apoio e motivação.

DEDICATÓRIAS

Dedico esta obra aos meus pais, mulher e filhos, pelo carinho, paciência e por terem estado sempre do meu lado mesmo nos momentos mais difíceis.

Filipe Pereira

Queria agradecer à minha mulher e aos meus filhos pelo apoio dado na realização desta obra, pois sem eles não teria sido possível concretizar os objetivos a que me propus.

José Machado

À Rosa Maria e ao Rodrigo.

Carlos Felgueiras

CAPÍTULO 1

JOB (PROGRAMA)

1. JOB (PROGRAMA)

1.1. Criação de programas

Um novo programa (JOB) só pode ser criado a partir do modo de programação.

1.1.1. Inserindo o nome e comentário do programa

É necessário inserir um nome para criar um programa que contenha até 32 caracteres.

JOB	ED	IT	DISPLAY	UTILITY	1? ☑ ⊻ ☜ ☜ 📮 🐂 祇	
JOB ARC MELDI VARIABLE BOOT IN/OUT NOBOT SYSTEM IN SYSTEM IN	NG E	JOB N COMME JOB T GROUF JOB T	IOB CREATE IAME ENT ©ILDER ≥ SET YPE	NONE R1 ROBOT JI		
		E	XECUTE	CANCEL	L	
Main Men	, Î	Simp	le Menu			

Figura 1.1. JANELA PARA CRIAÇÃO DE PROGRAMA OU JOB

Mude com o cursor para SELECT no menu do programa.

	DATA	ED	п	DISPLAY	' UTI	LITY	1212	M ¢		} (h) da	5 🕨
[Result]									Regi	ster KB	
										_	
к	EYBO/	RD S1	MBOL	REGIS							
	1	2	3	4	5	6	7	8	9	0	Back Space
	Q	w	Е	R	Т	Y	U	I	0	Р	Cancel
ſ	A	s	D	F	G	н	J	к	. L	C	apsLock OFF
z x c			c \	V E	3 1	N	и	Space	1	Enter	
Main Menu Simple Menu											

Figura 1.2. DEFINIÇÃO DO NOME DO PROGRAMA OU JOB

Entre na linha pressionando a tecla *SELECT* e o nome do Programa com o teclado. O botão *SYMBOL* permite alternar entre o alfabeto e os caracteres especiais para criar o nome desejado. Confirme a entrada com *ENTER*.

Também é possível inserir um comentário com até 32 caracteres usando o procedimento mencionado acima.

1.1.2. Seleção de pasta

Pressione *SELECT* e escolha a pasta desejada onde irá guardar o programa para que posteriormente possa encontrá-lo na lista de programas de acordo com a organização de pastas que preferir.

1.1.3. Seleção do grupo de eixos

Deve escolher na janela de seleção o grupo de eixos que será usado no programa. Não há possibilidade de posteriormente alterar ou complementar o grupo de eixos.

R1+S1:S1
R2+S1:S1
R1
R2
S1
R1+R2:R1
NO GROUP

Figura 1.3. SELEÇÃO DO GRUPO DE EIXOS

1.1.4. Seleção do tipo de programa

Neste caso é feita basicamente uma diferença entre os tipos de programas mencionados abaixo.

PRO ROBOT
PRO CONCURRENT
MACRO ROBOT
MACRO CONCURRENT
PROG. SIST.

Figura 1.4. SELEÇÃO DO TIPO DE PROGRAMA

PRO ROBOT

Este tipo normalmente compreende o programa de trabalho do robot.

2.2. Velocidade de segurança

O modo de velocidade de segurança limita a velocidade do manipulador a 25% da velocidade máxima e as instruções da ferramenta são executadas. Este modo é usado para verificar novos programas; mas não é recomendado para programas de teste onde as instruções da ferramenta envolvem velocidades superiores a 25% devido a efeitos de processamento.

Para habilitar ou desabilitar o modo Safety Speed, execute as seguintes etapas:

- 1. Selecione Modo Play.
- 2. No ecrã de conteúdo do programa, selecione UTILITY na área do menu.
- 3. Selecione SETUP SPECIAL RUN.
- 4. Mova o cursor para SPEED LIMIT; pressione SELECT (a opção muda para VALID).
- 5. Selecione COMPLETE para retornar ao conteúdo do programa com o modo ativado.

NOTA: A Teach Pendent exibe a mensagem "!Speed Limit mode" enquanto este modo está habilitado.

2.3. Dry-Run

O modo *Dry-Run* executa o programa a uma taxa constante de 10% e não executa as instruções da ferramenta. Este modo pode ser usado para verificar o tipo de movimento da trajetória e os comandos de posicionamento dos pontos.

Para habilitar ou desabilitar este modo, conclua as seguintes etapas:

- 1. Selecione Modo Play.
- 2. No ecrã de conteúdo do programa, selecione UTILITY na área do menu.
- 3. Selecione SETUP SPECIAL RUN.
- 4. Mova o cursor para DRY RUN; pressione SELECT (a opção muda para VALID).
- 5. Selecione COMPLETE para retornar ao conteúdo do programa com o modo ativado.

NOTA: A Teach pendant exibe a mensagem "!Dry-Run mode" enquanto este modo está ativado.

2.4. Modo de Revisão

O Modo de Revisão executa o programa na taxa programada, mas não executa as instruções da ferramenta. Ele é usado principalmente para verificar o caminho do *robot* em velocidade real e determinar os Níveis de Posicionamento (PL) necessários para uma aplicação específica.

Para ativar ou desativar o Modo de revisão, conclua as etapas a seguir:

- 1. Selecione Modo Play.
- 2. No ecrã de conteúdo do programa, selecione UTILITY na área do menu.
- 3. Selecione SETUP SPECIAL RUN.
- 4. Mova o cursor para CHECK; pressione SELECT (a opção muda para VALID).
- 5. Selecione COMPLETE para retornar ao conteúdo do programa com o modo ativado.

NOTA: A Teach pendant exibe a mensagem "!Check mode" enquanto está ativado o modo de revisão.

4.3.2. Definir uma variável do tipo robot (posição)

Ativa a variável robótica desejada.

DATA	EDIT	DISPLAY	UTILITY	12 🖻	M 4	<mark>8 🔞</mark>		þ
POSITION VARIABLE								
#P000 **: S [U] R] B] T]	****** 	NAME TOOL						
				PAGE				
Main Men	Main Menu Short Cut							

Figura 4.4. VARIÁVEL DE POSIÇÃO DO TIPO ROBOT

As variáveis não estão definidas se visualizar apenas asteriscos nelas. Deve definir essas variáveis para poder usá-las, ou seja, as variáveis devem ser atribuídas a um sistema de coordenadas

DATA	EDIT	DISPL	AY UTILI	тү 1	🖻 🎢	18	0	()
POSITION	POSITION VARIABLE							
#P000 **: S] U] R] B] T]	PULSE BASE ROBO USER TOOL	- T	NAME					
				PA	GE			
Main Men	u Sł	ort Cut						

Figura 4.5.. Atribuição de um sistema de coordenadas à variável de posição

Caso tenha sido selecionado PULSE, a variável é configurada para codificar valores sem unidades (IMPULSOS/PULSE).

FWD O robot pode ir para a posição zero (calibração) com a tecla verem definidos para zero.

DATA	EDIT	DISPL		тү 1	2 🛛	1		2	()
POSITION V	POSITION VARIABLE								
#P000 [**: S _ U _ R _ B _ T _		N T	IAME]				
				PA	AGE				
Main Menu	Sh	ort Cut							

Se ROBOT for selecionado, a variável ver-se-á da seguinte forma.

DATA	EDIT	DISPLAY	UTILITY	12 🗈 💥	🤫 🙆 🛛	🌡 💽 🐥	
POSITION							
#P000 R1: X [Y] Rx [Ry] Rz]	ROBOT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	NAME TOOL (FRO UP (FLIP)	E POSITION 1 : 00 E> T S<18 R<18 T<18				
				PAGE			
Main Men	u Sh	ort Cut					

Figura 4.7.. VARIÁVEL DE POSIÇÃO COM O SISTEMA ROBOT

A referência é sempre orientada para o sistema de coordenadas selecionado BASE, ROBOT, USER, TOOL nos eixos XYZ. Aqui, por exemplo: **ROBOT**

A unidade é sempre em milímetros (no caso de X, Y, Z) ou em graus (no caso de Rx, Ry, Rz). Quanto a NOMBRE , a variável pode ser claramente etiquetada usando NOMBRE POSITION 1 .

Deve-se ter em consideração o número de um determinado sistema de coordenadas de utilizador, após selecionar *USER*.

5. VARIÁVEIS ARITMÉTICAS

A linguagem Inform do YRC1000 possui diversos tipos de variáveis disponíveis, entre elas:

- Variáveis inteiras (I);
- Variáveis inteiras Duplas (D);
- Variáveis Reais (R);
- Variáveis Byte (B).

Тіро	Endereço	Range	Aplicação
Inteiro	1000-1099	-32768 a +32767	Contador
Inteiro duplo	D000-D099	-2147483648 a +2147483647	Distância (mícron)
Real	R000-R099	±3,400000 E+38 (máximo e mínimo) ±9,9999999 E-38 (valores entre -1 e +1)	Resultados decimais (DIV, SQRT, SIN, COS, ATAN, etc.)
Byte	B000-B099	0-255	Comunicação IO

5.1. Exibição de variáveis

Para exibir o valor contido numa variável, seja no modo *Teach* ou *Play*, conclua as seguintes etapas:

- 1. No Menu principal, selecione VARIABLE.
- 2. Selecione o tipo de variável
 - Inteiro (I)
 - Inteiro duplo (D)
 - Real (R)
 - Byte (B)

3. Use o cursor para mover para o endereço da variável apropriada.

5.2. Editando variáveis

Os valores das variáveis podem ser modificados manualmente da seguinte forma:

1. Exiba o endereço da variável desejada conforme descrito nas etapas anteriores.

2. Mova o cursor para o valor armazenado na variável; pressione SELECT.

3. Digite o valor desejado usando o teclado numérico; pressione ENTER.

5.3. Instruções aritméticas

5.3.1. Incremento (INC)

A instrução *INC* incrementa o valor armazenado numa variável em um (1); por exemplo, se a variável IO13 tiver o valor de seis (6), após a execução da instrução *INC* IO13, ela terá o valor de sete (7). A instrução *INC* é usada principalmente para contagem (partes produzidas por uma célula, número de vezes que um programa foi executado, etc.).

A instrução aritmética *INC* só pode ser utilizada com as variáveis *Integer* (I), *Double Integer* (D) e *Byte* (B). Se, ao executar a instrução *INC*, for ultrapassado o valor máximo ou mínimo da faixa da variável, então o alarme "ALARM: 4446 OVER VARIABLE LIMIT" apare-

lor de nove (9). A instrução *DEC* é utilizada principalmente em aplicações onde um objetivo de produção deve ser alcançado, pois uma variável pode ser selecionada para armazenar o número de vezes que o programa será executado.

A instrução aritmética DEC só pode ser utilizada com as variáveis *Integer* (I), *Double Integer* (D) e Byte (B). Se a execução da instrução *DEC* exceder o valor máximo ou mínimo do intervalo da variável, então o alarme "ALARM: 4446 OVER VARIABLE LIMIT" aparece, e o programa pára na linha de instrução, portanto é essencial selecionar o tipo de variável apropriado de acordo com a faixa ou gama de valores.

5.3.2.1. Instrução DEC

Modifique a contagem num programa apenas após a conclusão do programa; então insira a instrução *DEC* no final do programa como apresentado abaixo.

Programa: PIT-25

0000 NOP 0001 MOVJ VJ=50.00 0002 MOVJ VJ=25.00 0003 MOVL V=1200 0004 MOVL V=1200 0005 MOVL V=1200 0006 MOVL V=1200 0007 MOVJ VJ=100.00 0008 **DEC I038**

0009 END

5.3.2.2. Programação da instrução DEC

Para registar a instrução DEC em um programa faça o seguinte:

- 1. No modo Teach, mova o cursor para a área de endereço no ecrã.
- 2. Pressione a tecla INFORM LIST.
- 3. Selecione ARITH.
- 4. Selecione DEC.
- 5. Com o cursor na instrução DEC na linha de edição, pressione SELECT.
- O ecrã de edição detalhada é exibido.
- 6. Mova o cursor para RESULT para o símbolo 💟 e pressione SELECT.
- 7. Mova o cursor para o tipo de variável apropriado, no caso de um contador é utilizado o tipo de variável *Integer* (I); pressione *SELECT*.
- 8. Mova o cursor para o endereço e pressione *SELECT*, depois insira o número do endereço (0 a 99) usando as teclas numéricas e pressione *ENTER*.
- 9. Pressione ENTER para registar a instrução no programa.

NOTA: Ao inserir uma instrução entre as linhas existentes no programa, a tecla INSERT deve ser pressionada antes do ENTER final.

5.12. Instrução SETE

Em resumo, podemos afirmar que, em relação às instruções *SETE* e *GETE*, elas permitem efetuar a entrada de dados e saída de dados, respetivamente, as variáveis do tipo P.

Figura 5.3. Instruções SETE e GETE em variáveis do tipo P

5.13. Instrução GETS

Variáveis de Estado

As variáveis de estado são variáveis definidas de forma fixa. Eles refletem o estado do robot.

Seleção de algumas variáveis do contador de status

Variável	Uso/Referência	Nota/Descrição
\$B001	Número de TASK	Recolhe o número da tarefa ao executar Multita- refa (SUB1, SUB2, etc.)
\$B002	Marcador: peça encon- trada	Value=0: não há peça Value=1 Part encontrada (apenas com a função de procura)
\$B007	SETFILE/GETFILE	Valor=0: ok qualquer outro valor=: Estado de erro da instrução SETFILE/GETFILE

Seleção de algumas variáveis de posição de status

Variável	Uso/Referência	Nota/Descrição
\$PX000	Posição de Comando de Posição Atual	Recolhe a posição atual em dados de pulso
\$PX001	Posição de Comando de Posição Atual	Recolhe a posição atual nos dados X,Y,Z relativos ao sistema de coordenadas de base
\$PX011	REFPI	Guarda a posição do ponto de referência 1 nos dados de pulso
SPX018	REFP8	Guarda a posição do ponto de referência 8 nos dados de pulso
\$PX021	SREFP1	Guarda a posição do ponto de referência síncrono 1 nos dados de pulsos do <i>robot</i> e da estação
\$PX028	SREFP8	Guarda a posição do ponto de referência síncrono 87 nos dados de pulsos do <i>robot</i> e da estação

CAPÍTULO 6

INSTRUÇÕES DE MOVIMENTO

6. INSTRUÇÕES DE MOVIMENTO

Figura 6.1. Instruções de movimento

As instruções de movimento funcionam da mesma forma que as acedidas através de [MOTION TYPE], mas orientadas a uma variável de posição (variável do tipo P).

MOVJ MOVL → MOVL P000 V=66 MOVC

O *robot* mover-se-á em direção aos dados que estão registados na variável de posição POOO (dados X, Y, Z, Rx, Ry e Rz).

6.1. IMOV

Ao executar esta instrução, o *robot* movimentar-se-á de acordo com o conteúdo da variável de posição utilizada como *OFFSET*.

Noutras palavras, onde quer que o *robot* esteja, ele mover-se-á linearmente em X, Y e Z para os mm registado na variável do tipo P que usamos e em relação ao sistema de coordenadas que indicamos.

Figura 6.2. SINTAXE DA INSTRUÇÃO DE MOVIMENTO IMOV

CAPÍTULO 7

ESTADO DAS ENTRADAS E SAÍDAS (IO)

8. INSTRUÇÕES DE ENTRADA E SAÍDA

Na maioria dos casos, o *robot* interage com dispositivos periféricos como fontes de soldadura, posicionadores, sensores, etc. A comunicação com cada um dos dispositivos periféricos é realizada usando as Instruções de Controlo de Entrada e Saída (IO) do sistema.

8.1. DOUT (Saída digital)

É uma instrução de saída digital que é utilizada sempre que é necessário ativar ou desativar um dispositivo, que pode ser um electroválvula, um indicador luminoso, um posicionador, etc. Com esta instrução, as SAÍDAS podem ser ativadas/desativadas individualmente (OT), por grupos (OG) ou por meio grupos (OGH).

DOUT OT#(n° saída) ESTADO

Exemplos de sintaxe:

DOUT OT#(5) ON → Ativar saída 5	
OUT#0005 #10014 ●	
DOUT OT#(5) OFF → Desativar saída 5	
OUT#0005 #10014 O	
Grupos de 8 saídas → DOUT OG#(n.º grupo)	Valor constante (decimal)
	Variável

DOUT OG#(2) 81 [ou variável contendo o valor 81] grupo binário 2: 01010001 Ativa as saídas 9,13,15 e desativa as 10,11,12,14 e 16.

			grup	02			
N.° sal.[16	15	14	13	12	11	10	<mark>9</mark>]
Binario[0	1	0	1	0	0	0	1]
Grupos de 4 saídas → 🛙	OUT OGI	H#(n° do	grupo	H Valo	or consta iável	ante (decin	mal)
DOUT OGH#(1) 12 [ou	variável q	ue	biná	rio grupo	o 1: 1100)	
Contenha o valor 12]							
DOUT OGH#(2) 5 [ou v	ariável qu	e binári	o grupo	0 2: 0101			
Contenha o valor 5]							

15. PESO, INÉRCIAS E CENTRO DE GRAVIDADE DA FERRAMENTA

Peso: W (unidade em kg) \rightarrow O peso total da ferramenta instalada é definido. Recomendase definir um valor ligeiramente superior à carga real (arredondar o valor entre 0,5 e 1 kg para *robots* de pequeno e médio porte e 15 kg para *robots* de grande porte).

Centro de gravidade: Xg, Yg, Zg (unidade: mm) → O centro de gravidade da ferramenta instalada é definido aqui como a sua posição em relação ao sistema de coordenadas da flange. Como geralmente é difícil determinar um centro de gravidade exato, um valor aproximado pode ser definido. Determine e defina o centro de gravidade como um valor aproximado com base no contorno externo da ferramenta. Quando o centro de gravidade da ferramenta instalada puder ser claramente determinado a partir das especificações, defina o valor exato.

Inércia no centro de gravidade: lx, ly, lz (unidade: kgm²) → O movimento inercial da ferramenta está localizado no centro de gravidade.

Não é necessário definir o valor correto. No entanto, recomenda-se definir um valor um pouco maior do que a carga real. A configuração é usada para calcular o movimento inercial para cada eixo.

Como regra geral, não é necessário ajustar o movimento inercial no centro de gravidade, pois esse valor é suficientemente pequeno. Mas, este ajuste é necessário quando a ferramenta é maior em tamanho.

Figura 15.1. INTRODUÇÃO DOS ÂNGULOS DE ROTAÇÃO DAS FERRAMENTAS

19. EDIÇÃO DINÂMICA (PAM)

Às vezes é necessário editar passos num programa sem ter que ir para o Modo Teach.

A função *PAM* (Ajuste e Modificação de Posição) permite mover os pontos programados em qualquer direção XYZ, modificar a velocidade dos passos ou modificar os níveis de posicionamento enquanto estiver no modo *Teach* ou *Play*. As alterações tornam-se efetivas na próxima instrução NOP do programa selecionado no Modo *Play* ou imediatamente no Modo *Teach*.

Para usar a função PAM no modo Play, execute as seguintes etapas:

- 1. Com o programa a correr no modo *Play / AUTO* sem ter que mudar para o modo *Teach*, verifique ou anote o número do passo (não o número da linha) de cada passo a ser modificado e qual posição ou configuração de velocidade que ele requer.
- 2. No ecrã de conteúdo do programa, selecione UTILITY.
- 3. Selecione PAM.
- 4. Mova o cursor para JOB; pressione SELECT.
- 5. Mova o cursor para o nome do programa desejado; pressione SELECT.
- 6. Mova o cursor COORDINATE SYSTEM; pressione SELECT.

DATA	EDIT	ISPLAY	UTILITY	12 🗈	<mark>⊻ %</mark>	🖸 📮 🕆
PAM						
JOB Image: Constraint of the state of the s	Attraction OT DONE OBOT OBOT 0.000	R1 Rx(deg) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ry(deg) Rz(0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0.	deg) V(%) 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00	PL	
COMPLE	TE	CANCEL				
Main Menu	ShortCu	ıt				

Figura 19.1. JANELA DE PAM

NOTA: Os valores de deslocamento XYZ devem ser relativos a um sistema de coordenadas. As opções do sistema de coordenadas são BASE, ROBOT, TOOL e USER. O sistema de coordenadas é ajustado no parâmetro S3C808 (0=Base, 1=Robot, 2=Ferramenta, 3 a 26=Utilizador 1-24).

21. LIGAÇÕES FÍSICAS DOS IOS NO CONTROLADOR YRC1000

Quatro conectores de IO digitais para IO de uso geral do *robot* são fornecidos com 40 entradas e 40 saídas.

As IO são divididas em dois tipos: IO de uso geral e IO específicas.

A atribuição de IO difere dependendo da aplicação. A IO específica é um sinal no qual a parte é decidida antecipadamente. A IO específica é usada quando os equipamentos de operação externa, como o controlador posicionador e o controlador centralizado, controlam o *robot* e os equipamentos relacionados como um sistema. As IO de uso geral são usadas principalmente como sinais de tempo para o manipulador e dispositivos periféricos em *JOBs* que exigem movimento do *robot*.

No caso de utilizar o controlador YRC1000, terá que consultar o manual do *robot* na secção "Instalação e ligações" e procurar a correspondência entre os pinos físicos e o "*LADDER*". Nos esquemas seguintes é disponibilizado um exemplo dessa correspondência.

21.1. Placa de IO de uso geral (JAND-AIO02-E)

Figura 21.1. PLACA JAND-AIO02-E

Em que:

- Para alternar a fonte de alimentação externa.
- ② Fusível de proteção da fonte de alimentação (F1) 3,15A / 250V.
- ③ Conector de saída da fonte de alimentação.
- ④ Conector de IO digital (CN306, CN307, CN308 e CN309).

21.2. Fio de conexão com conector de IO de uso geral do *robot* (CN306, 307, 308, 309)

Consulte a Figura abaixo ao fabricar a conexão do cabo com o conector de IO de uso geral do *robot* (CN306, 307, 308, 309) da unidade de IO. Deve ser usado um cabo de par trançado não blindado (o conector do lado do cabo e o bloco de terminais de IO são as opções).

Figura 21.2. LÓGICA PNP

21.3. Exemplo do circuito de sequência SERVO ON do dispositivo externo

- Servo on PB
- ? SERVO ON confirmation X2
- ? SERVO ON command
- ④ SERVO-ON power ON X3
- SERVO ON confirmation

Figura 21.3. LADDER CORRESPONDENTE

21.6. Alocação de IO e diagrama de conexão para *handling* (paletização)

A conexão com periféricos digitais externos é feita através da placa X18-CN220, conforme imagem abaixo.

Figura 21.6. CONEXÃO NA PLACA DE IO X18-CN220

A forma como e inserem as cablagens dos periféricos nesta placa, deverão ser realizadas conforme a seguinte imagem.

Figura 21.7. CONEXÃO NA PLACA DE IO X18-CN220

As conexões nas CN306, CN307, CN308 e CN309 deverá ser realizada conforme os esquemas abaixo indicados para paletização, por exemplo.

Figura 21.9. JANCD-AIO02-E (CONECTOR CN307)

DATA E	DIT DISPLAY U	TILITY 1224	\$ 🖻 🖵 🕆 áí	Þ	
108	INTEREPRENCE AREA			-	
	EXTERNAL INPUT	RIN	NETWORK OUTPUT		
GENERAL	EXTERNAL OUTPUT	REGISTER	ANALOG OUTPUT	0	
VARIABLE B001	GENERAL PURPOSE INPUT	AUXILIARY RELAY	SV POWER STATUS		
IN/OUT	GENERAL PURPOSE OUTPUT	INTERNAL CONTROL STATUS	LADDER PROGRAM		Saídas específicas
ROBOT	SPECIFIC INPUT	PSEUDO INPUT SIG	I/O ALARM		
SYSTEM INFO	SPECIFIC OUTPUT	NETWORK INPUT	I/O MESSAGE		
			<u> </u>		
Main Menu	Simple Menu				

23.3. Sinais específicos para áreas cúbicas

Figura 23.6. SINAIS ESPECÍFICOS PARA ÁREAS CÚBICAS

DATA	EDIT	DISPLAY	UTILITY	1212	1 <u>11</u> % @C	0	Þ	
JOB GENERAL VARIABLE BOOT IN/OUT IN/OUT SYSTEM INF SYSTEM INF	SPEC G S S S S S S S S S S S S S S S S S S	CIFIED OUTPU COUP DUT#0057 #50 DUT#0058 #50 DUT#0060 #50 DUT#0060 #50 DUT#0061 #50 DUT#0063 #50 DUT#0064 #50	JT)080 О –)081 О)082 О)082 О)083 О)083 О)083 О)083 О)085 О)085 О)086 О)087 О	0:DEC. CUEE/AXI CUEE/AXI CUEE/AXI CUEE/AXI CUEE/AXI CUEE/AXI CUEE/AXI	00:HEX. \$ INTR1 \$ INTR2 \$ INTR3 \$ INTR4 \$ INTR5 \$ INTR6 \$ INTR6 \$ INTR7 \$ INTR8			Quando o TCP do robô entra nesta área, a saída específica da área cúbica (1-64) não é ativada
					PAGE			

Figura 23.7. TCP FORA DA ÁREA ESPECIFICADA - NÃO ATIVAÇÃO DO SINAL ESPECÍFICO DA ÁREA

CÚBICA

Possível solução

JOB:MAIN

0000	NOP	
0001	DIN B099 SOUT#(57)	
0002	JUMP JOB ERROR-CUBE IF BO99<>1	
0003	JUMP JOB:WORK-IF IN#(13)=ON	
0004	END	

JOB:MAIN

0000	NOP
0001	SETUALM 8000 "O robô nao está na posição
	normal"0
0002	END

ALARM			
ALARM 8000	TASK#0		
O robô não está [0]	TASK#0 i na posição normal		
Reset			

Notas:

Figura 9.17.	Exemplo do uso das instruções SWITCH CASE	98
Figura 9.18.	Fluxograma do exemplo anterior	
	COM A INSTRUÇÃO SWITCH CASE	98
Figura 9.19.	Exemplo do uso da instrução FOR	99
Figura 9.20.	Fluxograma do exemplo anterior com a instrução FOR	99
Figura 9.21.	Exemplo do uso da instrução WHILE	99
Figura 9.22.	Fluxograma do exemplo anterior com a instrução WHILE	. 100
Figura 11.1.	Grupo de Eixos Robot	117
Figura 11.2.	UTILIZAÇÃO DAS COORDENADAS DE UTILIZADOR	
	ATÉ UM MÁXIMO DE 63	121
Figura 11.3.	Sistema de coordenadas de utilizador	121
Figura 12.1.	Janela de escolha do sistema de coordenadas de utilizador	123
Figura 12.2.	Janela de gravação dos 3 pontos do sistema	
	DE COORDENADAS DE UTILIZADOR	123
Figura 12.3.	Janela de seleção das coordenadas de utilizador	124
Figura 13.1.	Ponto central da ferramenta (TCP)	129
Figura 13.2.	Exemplos de TCP em várias ferramentas	129
Figura 13.3.	DISPONIBILIDADE DE 1 OU 64 PASTAS PARA FERRAMENTAS	130
Figura 13.4.	ConFiguração de uma ferramenta	130
Figura 13.5.	ConFiguração de uma ferramenta na flange do robot	131
Figura 13.6.	Sistema de coordenadas na flange do Robot	131
Figura 13.7.	Exemplo de medidas a serem colocadas na pasta de ferramentas (TOOL) do robot	132
Figura 13.8.	Janela de inserção de dados de uma ferramenta (TOOL) no robot	132
Figura 13.9.	Janela de medição do TCP da ferramenta de forma automática	133
Figura 13.10.	Janela de seleção da ferramenta em função do robot escolhido	133
Figura 13.11.	CALIBRAÇÃO DA FERRAMENTA DO ROBOT	
	COM 5 POSIÇÕES DIFERENTES	134
Figura 14.1.	Exemplo introdução de dados para a rotação dos ângulos da ferramenta	137
Figura 14.2.	Exemplo de rotação dos ângulos da ferramenta	138
Figura 14.3.	INTRODUÇÃO DOS ÂNGULOS DE ROTAÇÃO DAS FERRAMENTAS	138
Figura 15.1.	۔ INTRODUÇÃO DOS ÂNGULOS DE ROTAÇÃO DAS FERRAMENTAS	141

ROBÓTICA INDUSTRIAL PARTE II – PROGRAMAÇÃO AVANÇADA

FILIPE PEREIRA JOSÉ MACHADO CARLOS FELGUEIRAS

Sobre a coleção

Esta coleção, para além de suprimir uma necessidade ao nível de obras na área da automação, robótica e controlo industrial, dando ênfase à Indústria 4.0 e à digitalização, visa preparar profissionais capazes de conceber e implementar processos de robotização e automatização industrial, promovendo ao longo de todos os volumes a capacidade de adquirir *know-how* para concretizar soluções de digitalização de sistemas e processos, fundamentais para as indústrias do futuro se tornarem mais autónomas e competitivas.

Sobre a obra

Este volume, no seguimento do anterior, pretende preencher a lacuna a nível de bibliografia em língua portuguesa na área da Robótica Industrial, tendo os autores utilizado a marca de robots YASKAWA, não só por ser uma das marcas mais vendidas em todo o mundo, mas também pela sua fácil operação e programação.

Sobre os autores

Filipe Pereira é licenciado em Engenharia Eletrotécnica e de Computadores, no ramo de Automação Industrial, pelo Instituto Superior de Engenharia do Porto (ISEP), e mestre em Engenharia Eletrotécnica e Informática, na área de conhecimento de Automação, Robótica e Controlo Industrial. Especialista em Eletrónica e Automação, é membro investigador/colaborador do Centro de Investigação MEtRICs e do INEGI. É atualmente professor nos departamentos de Engenharia Mecânica da Faculdade de Engenharia da Universidade do Porto (FEUP), do Instituto Superior de Engenharia do Porto (ISEP) e da Universidade do Minho (UM).

José Machado doutorou-se em Engenharia Mecânica – Automação, em simultâneo pela Universidade do Minho (UM) e pela École Normale Supérieure de Cachan (França), em 2006. É Diretor-Adjunto do Centro de Investigação MEtRICs e Professor Associado com Agregação no Departamento de Engenharia Mecânica da Universidade do Minho. É autor ou coautor de mais de 250 artigos publicados em periódicos e anais de conferências com arbitragem científica. É membro das Comunidades Científicas IEEE, IFAC e IFTOMM.

Carlos Felgueiras doutorou-se em Engenharia Eletrotécnica e Computadores, pela Faculdade de Engenharia da Universidade do Porto (FEUP). Atualmente é docente do Instituto Superior de Engenharia do Porto (ISEP) no Departamento de Engenharia Eletrotécnica. É autor ou coautor de mais de 100 publicações em revistas e conferências internacionais.

Também disponível em formato e-book

Apoio

engebcck