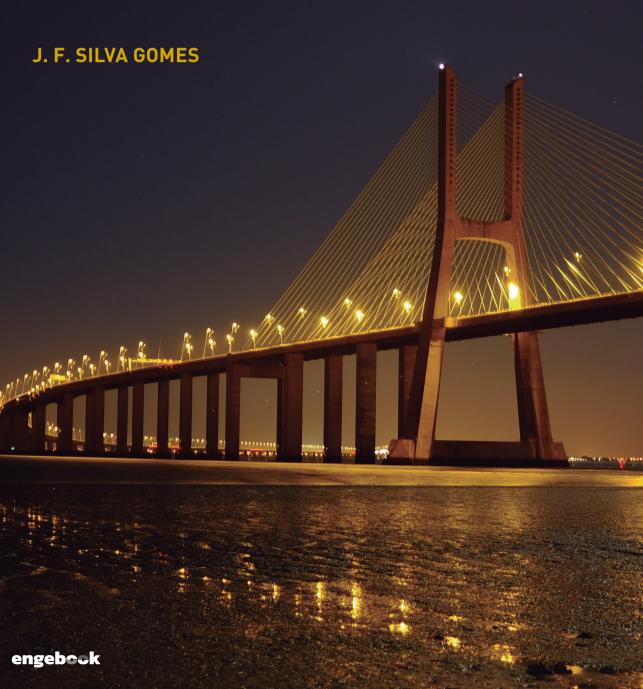
# MECÂNICA DOS MATERIAIS E ESTRUTURAS LINEARES

**TEORIA E APLICAÇÕES** 



#### AUTOR

#### J. F. Silva Gomes

#### TÍTULO

#### MECÂNICA DOS MATERIAIS E ESTRUTURAS LINEARES - Teoria e Aplicações

**FDICÃC** 

Quântica Editora - Conteúdos Especializados, Lda.

Tel. 220 939 053 · E-mail: geral@quanticaeditora.pt · www.quanticaeditora.pt

Praça da Corujeira n.º 38 · 4300-144 PORTO

CHANCELA

Engebook - Conteúdos de Engenharia

DISTRIBUIÇÃO

Booki - Conteúdos Especializados

Tel. 220 104 872 · Fax 220 104 871 · E-mail: info@booki.pt · www.booki.pt

REVISÃO

Quântica Editora - Conteúdos Especializados, Lda.

FOTO DE CAPA

Ponte Vasco da Gama, Lisboa

Autor: Carlos Carvalho

DESIGN DE CAPA

Delineatura - Design de Comunicação · www.delineatura.pt

IMPRESSÃO julho, 2021

DEPÓSITO LEGAL

483918/21



A cópia ilegal viola os direitos dos autores.

Os prejudicados somos todos nós.

Copyright © 2021 | Todos os direitos reservados a Quântica Editora – Conteúdos Especializados, Lda. A reprodução desta obra, no todo ou em parte, por fotocópia ou qualquer outro meio, seja eletrónico, mecânico ou outros, sem prévia autorização escrita do Editor e do Autor, e ilícita e passível de procedimento judicial contra o infrator.

Este livro encontra-se em conformidade com o novo Acordo Ortográfico de 1990, respeitando as suas indicações genéricas e assumindo algumas opções específicas.

CDU

620 Testes dos materiais.

621 Engenharia mecânica em geral.

621.7 Tecnologia mecânica em geral: processos, ferramentas, máquinas, equipamentos

ISBN

Papel: 9789899017573 E-book: 9789899017580

Catalogação da publicação Família: Engenharia Mecânica Subfamília: Materiais/Metalúrgica

## ÍNDICE

| PREFÁ   | CIO                                            | xiii |
|---------|------------------------------------------------|------|
| LISTA [ | OOS SÍMBOLOS                                   | XV   |
| CAPÍTU  | II O 1                                         | 19   |
|         | SE DAS TENSÕES                                 | 17   |
| 1.1.    | RESUMO DA TEORIA                               | 21   |
| 1.1.1.  | Introdução. O conceito de tensão               | 21   |
| 1.1.2.  | Componentes cartesianas da tensão              | 22   |
| 1.1.3.  | Tensão para uma orientação arbitrária          | 23   |
| 1.1.4.  | Equações de equilíbrio                         | 24   |
| 1.1.5.  | Leis de transformação das tensões              | 25   |
| 1.1.6.  | Tensões principais                             | 28   |
| 1.1.7.  | Valores máximos das tensões normais e de corte | 30   |
| 1.1.8.  | Tensões octaédricas                            | 30   |
| 1.1.9.  | Construção do círculo de Mohr                  | 31   |
| 1.1.10. | Estado plano de tensão                         | 33   |
| 1.1.11. | Tensões principais secundárias                 | 35   |
| 1.1.12. | Círculo de Mohr para as tensões num plano      | 35   |
| 1.2.    | PROBLEMAS RESOLVIDOS                           | 37   |
| 1.3.    | PROBLEMAS PROPOSTOS                            | 80   |
| 1.4.    | BIBLIOGRAFIA                                   | 89   |
| CAPÍTU  | JL0 2                                          | 91   |
| _       | SE DAS DEFORMAÇÕES                             |      |
| 2.1.    | RESUMO DA TEORIA                               | 93   |

Índice vii

| 2.1.1.  | Deslocamento e deformação linear            | 93  |
|---------|---------------------------------------------|-----|
| 2.1.2.  | Distorção ou deformação de corte            | 94  |
| 2.1.3.  | Matriz e vetor das deformações              | 95  |
| 2.1.4.  | Deformação segundo uma direção arbitrária   | 96  |
| 2.1.5.  | Leis de transformação das deformações       | 97  |
| 2.1.6.  | Deformações principais                      | 99  |
| 2.1.7.  | Deformações sobre um plano                  | 100 |
| 2.1.8.  | Valores estacionários das deformações       | 103 |
| 2.1.9.  | Equações de compatibilidade                 | 104 |
| 2.1.10. | Construção de Mohr para as deformações      | 104 |
| 2.1.11. | Estado plano de deformação                  | 105 |
| 2.1.12. | Deformações principais secundárias          | 106 |
| 2.1.13. | Círculo de Mohr para um EPD                 | 107 |
| 2.1.14. | Análise de rosetas                          | 107 |
| 2.2.    | PROBLEMAS RESOLVIDOS                        | 112 |
| 2.3.    | PROBLEMAS PROPOSTOS                         | 157 |
| 2.4.    | BIBLIOGRAFIA                                | 165 |
| CAPÍTU  | JLO 3                                       | 167 |
| RELAÇ   | ÕES ENTRE TENSÕES E DEFORMAÇÕES             |     |
| 3.1.    | RESUMO DA TEORIA                            | 169 |
| 3.1.1.  | Lei de Hooke generalizada                   | 169 |
| 3.1.2.  | Lei de Hooke para materiais isotrópicos     | 171 |
| 3.1.3.  | Módulo de rigidez                           | 172 |
| 3.1.4.  | Módulo de compressibilidade                 | 173 |
| 3.1.5.  | Módulo de Young e coeficiente de Poisson    | 173 |
| 3.1.6.  | Relações entre as constantes elásticas      | 174 |
| 3.1.7.  | Lei de Hooke em termos de $\it E$ e $\it v$ | 174 |
| 3.1.8.  | Estado plano de tensão                      | 177 |

| 3.1.9.  | Estado plano de deformação               | 177 |
|---------|------------------------------------------|-----|
| 3.1.10. | Energia elástica de deformação           | 178 |
| 3.1.11. | Critérios de resistência                 | 179 |
| 3.1.12. | Teoremas energéticos                     | 181 |
| 3.1.13. | Princípio de Saint-Venant                | 184 |
| 3.1.14. | Equações em coordenadas cilíndricas      | 185 |
| 3.2.    | PROBLEMAS RESOLVIDOS                     | 187 |
| 3.3.    | PROBLEMAS PROPOSTOS                      | 232 |
| 3.4.    | BIBLIOGRAFIA                             | 243 |
| CAPÍTI  | JLO 4                                    | 245 |
| SOLIC   | ITAÇÃO AXIAL DE ESTRUTURAS LINEARES      |     |
| 4.1.    | RESUMO DA TEORIA                         | 247 |
| 4.1.1.  | Introdução                               | 247 |
| 4.1.2.  | Energia elástica de deformação           | 248 |
| 4.1.3.  | Estruturas articuladas isostáticas       | 248 |
| 4.1.4.  | Estruturas articuladas hiperestáticas    | 250 |
| 4.2.    | PROBLEMAS RESOLVIDOS                     | 251 |
| 4.3.    | PROBLEMAS PROPOSTOS                      | 284 |
| 4.4.    | BIBLIOGRAFIA                             | 295 |
| CAPÍTU  | JLO 5                                    | 297 |
| TORÇÂ   | ÃO DE PEÇAS LINEARES                     |     |
| 5.1.    | RESUMO DA TEORIA                         | 299 |
| 5.1.1.  | Veio cilíndrico de secção circular       | 299 |
| 5.1.2.  | Veio oco de secção circular              | 301 |
| 5.1.3.  | Veio prismático (Teoria de Saint-Venant) | 302 |
| 5.1.4.  | Analogia de membrana (Teoria de Prandtl) | 305 |

Índice

| 5.1.5. | Veio de secção retangular                    | 307 |
|--------|----------------------------------------------|-----|
| 5.1.6. | Veio de secção tubular de parede fina        | 309 |
| 5.1.7. | Veio de secção circular de diâmetro variável | 313 |
| 5.1.8. | Energia de deformação em torção              | 314 |
| 5.2.   | PROBLEMAS RESOLVIDOS                         | 315 |
| 5.3.   | PROBLEMAS PROPOSTOS                          | 352 |
| 5.4.   | BIBLIOGRAFIA                                 | 361 |
| CAPÍT  | ULO 6                                        | 363 |
| TENS   | ÕES DE FLEXÃO EM VIGAS                       |     |
| 6.1.   | RESUMO DA TEORIA                             | 365 |
| 6.1.1. | Introdução                                   | 365 |
| 6.1.2. | Flexão pura duma viga                        | 366 |
| 6.1.3. | Vigas compostas de vários materiais          | 367 |
| 6.1.4. | Flexão desviada                              | 369 |
| 6.1.5. | Flexão combinada com esforço normal          | 370 |
| 6.1.6. | Flexão combinada com torção                  | 371 |
| 6.1.7. | Flexão combinada com esforço de corte        | 374 |
| 6.1.8. | Centro de corte ou centro de torção          | 381 |
| 6.1.9. | Flexão de barras curvas                      | 383 |
| 6.2.   | PROBLEMAS RESOLVIDOS                         | 386 |
| 6.3.   | PROBLEMAS PROPOSTOS                          | 436 |
| 6.4.   | BIBLIOGRAFIA                                 | 447 |
| CAPÍT  | UL0 7                                        | 449 |
| DEFLI  | EXÃO DE VIGAS ISOSTÁTICAS                    |     |
| 7.1.   | RESUMO DA TEORIA                             | 451 |
| 7.1.1. | Introdução                                   | 451 |

| 7.1.2. | Método da integração da elástica                | 452   |
|--------|-------------------------------------------------|-------|
| 7.1.3. | Método da viga conjugada                        | 454   |
| 7.1.4. | Aplicação dos teoremas energéticos              | 458   |
| 7.2.   | PROBLEMAS RESOLVIDOS                            | 461   |
| 7.3.   | PROBLEMAS PROPOSTOS                             | 517   |
| 7.4.   | BIBLIOGRAFIA                                    | 527   |
| CAPÍT  | ULO 8                                           | 529   |
|        | ESTATICAMENTE INDETERMINADAS<br>URVADURA        |       |
| 8.1.   | RESUMO DA TEORIA                                | 531   |
| 8.1.1. | Introdução                                      | 531   |
| 8.1.2. | Tipos de vigas estaticamente indeterminadas     | 531   |
| 8.1.3. | Método da sobreposição                          | 534   |
| 8.1.4. | Aplicação do teorema de Castigliano             | 539   |
| 8.1.5. | Método dos três momentos para vigas contínuas   | 541   |
| 8.1.6. | Encurvadura de peças lineares (Teoria de Euler) | 545   |
| 8.1.7. | Fórmula da secante para barras à compressão     | 550   |
| 8.2.   | PROBLEMAS RESOLVIDOS                            | 552   |
| 8.3.   | PROBLEMAS PROPOSTOS                             | 595   |
| 8.4.   | BIBLIOGRAFIA                                    | 607   |
| APÊNI  | DICES                                           | dcix  |
| A.     | PROPRIEDADES DE MATERIAIS CORRENTES             | dcxi  |
| B.     | FÓRMULAS MATEMÁTICAS                            | dcxv  |
| B.1.   | Constantes matemáticas                          | dcxv  |
| B.2.   | Operações com expoentes                         | dcxv  |
| B.3.   | Operações com logaritmos                        | dcxv  |
| B.4.   | Soluções de equações polinomiais                | dcxvi |
|        |                                                 |       |

Índice

| B.5.               | Funções trigonométricas                     | dcxvii   |  |
|--------------------|---------------------------------------------|----------|--|
| B.6.               | Funções hiperbólicas                        | dcxx     |  |
| B.7.               | Tabela de derivadas                         | dcxxi    |  |
| B.8.               | Tabela de integrais                         | dcxxiv   |  |
| B.9.               | Cálculo matricial                           | dcxxxi   |  |
| C.                 | PROPRIEDADES DAS ÁREAS PLANAS               | dcxxxiii |  |
| D.                 | DEFLEXÕES E INCLINAÇÕES DE VIGAS            | dcxliii  |  |
| D.1.               | Vigas em consola                            | dcxliii  |  |
| D.2.               | Vigas simplesmente apoiadas                 | dcxlvi   |  |
| D.3.               | Vigas hiperestáticas                        | dcl      |  |
| E.                 | PROPRIEDADES DE PERFIS EM AÇO LAMINADO      | dclv     |  |
| E.1.               | Perfis T (Norma EN: 10055)                  | dclvi    |  |
| E.2.               | Perfis IPN (Norma EN 10365)                 | dclvii   |  |
| E.3.               | Perfis IPE (Norma EN 10365)                 | dclviii  |  |
| E.4.               | Perfis HEA (Norma EN 10365)                 | dclix    |  |
| E.5.               | Perfis HEB (Norma EN 10365)                 | dclx     |  |
| E.6.               | Perfis UPN (Norma EN 10365)                 | dclxi    |  |
| E.7.               | Perfis UPE (Norma EN 10365)                 | dclxii   |  |
| E.8.               | Perfis L – Abas iguais (Norma EN: 10056)    | dclxiii  |  |
| E.9.               | Perfis L – Abas desiguais (Norma EN: 10056) | dclxvi   |  |
|                    |                                             |          |  |
| ÍNDICE DE FIGURAS  |                                             |          |  |
| ÍNDICE             | DE TABELAS                                  | dclxxvii |  |
| ÍNDICE REMISSIVO d |                                             |          |  |

# **ANÁLISE DAS TENSÕES**

### 1.1. RESUMO DA TEORIA

### 1.1.1. Introdução. O conceito de tensão

Há, fundamentalmente, dois tipos distintos de forças exteriores que podem atuar sobre um corpo material: (*i*)-forças de superfície (forças de contacto, por exemplo) e (*ii*)-forças de volume (o peso, por exemplo). Considere-se o corpo (*C*) em equilíbrio sob a ação destes dois tipos de forças, Fig. 1.1..

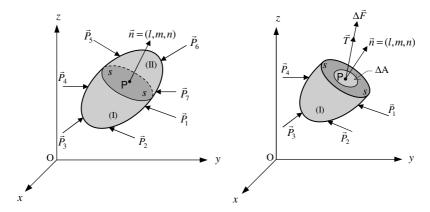


Fig. 1.1. Corpo em equilíbrio.

Fig. 1.2. Tensão resultante no ponto P.

A *Tensão Resultante*  $\vec{T}(P,\vec{n})$ , no ponto P, para uma superfície de corte perpendicular a  $\vec{n} = (l, m, n)$ , Fig. 1.2., define-se pela expressão seguinte:

$$\vec{T} = \lim_{A \to 0} \frac{\Delta \vec{F}}{\Delta A} \tag{1.1}$$

onde  $\Delta \vec{F}$  é a resultante das forças internas, sobre área elementar  $\Delta A$ , que a parte II do corpo material exerce sobre a parte I.

(vii)-A intersecção dos dois arcos de circunferência (iv) e (vi) define o ponto Q, cujas coordenadas no plano ( $\sigma$ ,  $\tau$ ) são:

$$Q \equiv \begin{bmatrix} (l^2 \sigma_1 + m^2 \sigma_2 + n^2 \sigma_3), \sqrt{l^2 \sigma_1^2 + m^2 \sigma_2^2 + n^2 \sigma_3^2 - (l^2 \sigma_1 + m^2 \sigma_2 + n^2 \sigma_3)^2} \end{bmatrix}$$

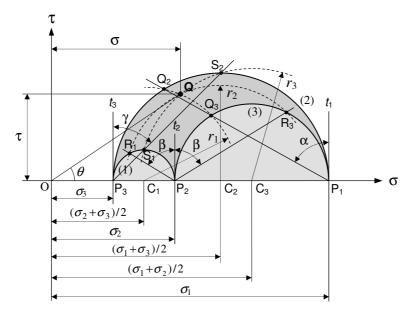


Fig. 1.11. Diagrama de Mohr para as tensões.

O ponto Q representativo da tensão para o plano considerado tem coordenadas tais que a sua abcissa é igual à componente normal da tensão e a ordenada é igual à respetiva componente tangencial.

O raio vetor  $\overrightarrow{OQ}$  materializa o vetor tensão resultante  $\overrightarrow{T}(P, \vec{n})$ . O ângulo  $\theta = arctg(\tau/\sigma)$ , que o raio vetor  $\overrightarrow{OQ}$  faz com o eixo das abcissas, representa a inclinação da tensão resultante  $\overrightarrow{T}(P, \vec{n})$  em relação à seminormal positiva  $\vec{n}$  do plano sobre o qual atua.

# **ANÁLISE DAS DEFORMAÇÕES**

### 2.1. RESUMO DA TEORIA

### 2.1.1. Deslocamento e deformação linear

Sejam (x,y,z) as coordenadas de um ponto genérico P, na configuração inicial (R) de um corpo material, Fig. 2.1.. Depois da transformação, os pontos do corpo passam a ocupar uma outra região (R'). Seja o ponto P', de coordenadas (x', y', z'), a nova posição ocupada pela mesma partícula de material. O vetor  $\vec{u} = \overline{PP'}$ , com origem na posição inicial P da partícula e extremidade na posição final P', é o *vetor deslocamento*, ou simplesmente *deslocamento* do ponto P(x,y,z).

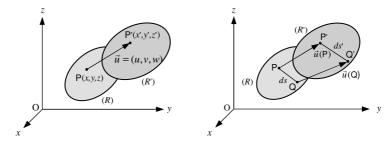


Fig. 2.1. Deslocamento do ponto P.

Fig. 2.2. Deformação linear.

Define-se *extensão* ou *deformação linear* do segmento PQ, Fig. 2.2., como sendo a variação relativa do respetivo comprimento, isto é:

$$\varepsilon_{PQ} = \frac{ds' - ds}{ds} \tag{2.1}$$

Fazendo  $ds \to 0$  obtém-se a *deformação linear* ou *extensão linear* no ponto P, segundo a direção PQ definida pelo versor  $\vec{n} = (l, m, n)$ :

$$\varepsilon(\mathbf{P}, \vec{n}) = \lim_{ds \to 0} \frac{ds' - ds}{ds}$$
 (2.2)

### 2.1.13. Círculo de Mohr para um estado plano de deformação

À semelhança do que foi feito para um estado plano de tensão, também aqui a extensão linear  $\varepsilon$  e a distorção  $\gamma$  podem ser diretamente relacionadas com as coordenadas do ponto D sobre o círculo de Mohr para as deformações, Fig. 2.10., construído de forma semelhante à do círculo de Mohr para as tensões, tendo em conta as equivalências anteriormente referidas.

Assim, as deformações ou extensões lineares são referidas ao eixo das abcissas, positivamente no sentido da esquerda para a direita.

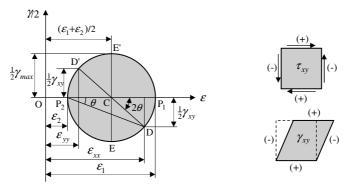


Fig. 2.10. Construção de Mohr para um estado plano de deformação.

Fig. 2.11. Convenção de sinais para  $\tau \in \chi$ 

Quando a deformação angular  $\gamma$  é positiva,  $(\gamma_{xy} > 0)$ , o ponto D representativo da direção Ox é marcado a uma distância  $\frac{1}{2}\gamma_{xy}$  para baixo do eixo horizontal, e o ponto D' representativo da direção Oy, a uma distância  $\frac{1}{2}\gamma_{xy}$  para cima; e vice-versa, quando  $\gamma_{xy}$  é negativa.

De notar que esta convenção para o sinal da deformação de corte coincide com a que foi adotada na construção do círculo de Mohr para as tensões. Este pormenor, relativo à convenção de sinais em ambos os casos, é posto em evidência no esquema apresentado na Fig. 2.11..

#### 2.1.14. Análise de rosetas

Experimentalmente, é mais fácil medir diretamente as extensões lineares do que as distorções. Por isso, é frequente pôr-se o problema de determinar as extensões principais num ponto, a partir da medição das extensões li-

# RELAÇÕES ENTRE TENSÕES E DEFORMAÇÕES

### 3.1. RESUMO DA TEORIA

### 3.1.1. Lei de Hooke generalizada

A primeira formulação de uma ligação entre a deformação e as forças aplicadas a um corpo linear, foi proposta por *R. Hooke*, estabelecendo uma relação de proporcionalidade entre aquelas duas grandezas, Fig. 3.1..

$$\sigma = E\varepsilon \tag{3.1}$$

onde  $\sigma = F/A$  é a tensão, E é a constante de proporcionalidade (*módulo de Young* do material) e  $\varepsilon$  é a deformação longitudinal da barra.

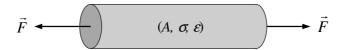


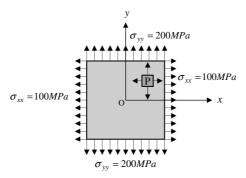
Fig. 3.1. Solicitação duma barra à tração.

Uma generalização natural da *lei de Hooke* ao caso tridimensional consiste em considerar que em todos os pontos do corpo cada uma das seis componentes da tensão se pode exprimir como uma combinação linear das seis componentes da deformação, e inversamente. É a chamada *lei de Hooke generalizada*, que se pode exprimir matematicamente através das seis equações seguintes:

$$\begin{split} &\sigma_{xx} = C_{11}\varepsilon_{xx} + C_{12}\varepsilon_{yy} + C_{13}\varepsilon_{zz} + C_{14}\gamma_{yz} + C_{15}\gamma_{xz} + C_{16}\gamma_{xy} \\ &\sigma_{yy} = C_{21}\varepsilon_{xx} + C_{22}\varepsilon_{yy} + C_{23}\varepsilon_{zz} + C_{24}\gamma_{yz} + C_{25}\gamma_{xz} + C_{26}\gamma_{xy} \\ &\sigma_{zz} = C_{31}\varepsilon_{xx} + C_{32}\varepsilon_{yy} + C_{33}\varepsilon_{zz} + C_{34}\gamma_{yz} + C_{35}\gamma_{xz} + C_{36}\gamma_{xy} \end{split}$$
 (3.2.a)

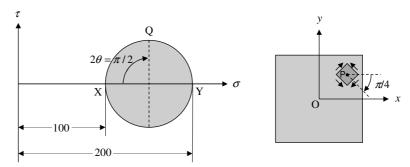
### Resolução 3.2.6.

O problema proposto corresponde à situação dum estado plano de tensão, conforme esquematicamente representada na figura a seguir:



### a) - Tensão de corte máxima

A construção do círculo de Mohr num ponto P qualquer da placa, para as tensões no plano da placa (i.e. no plano xy), está representada na figura a seguir. O ponto X=(100,0) é representativo duma face perpendicular ao eixo dos xx e o ponto Y=(200,0) é representativo duma face perpendicular ao eixo dos yy.



A tensão de corte máxima no plano da placa é igual à ordenada do ponto Q sobre o diâmetro vertical e, portanto, igual ao raio do círculo de Mohr, isto é:

$$(\tau_{max})_{xy} = \frac{200 - 100}{2} = 50MPa$$

Esta tensão de corte máxima ocorre sobre um plano de corte cuja normal  $\vec{n}$  faz com o eixo dos xx um ângulo  $\theta$  igual a metade do arco  $XQ(=\pi/2)$ , isto é  $\theta=\pi/4$ .

Se se considerar a terceira tensão principal ( $\sigma_{zz} = 0$ ), a construção de Mohr tridimensional correspondente é a representada na figura a seguir:

# SOLICITAÇÃO AXIAL DE ESTRUTURAS LINEARES

### **4.1. RESUMO DA TEORIA**

### 4.1.1. Introdução

O caso mais simples de solicitação axial é o de uma barra linear de secção constante, em tração por duas forças iguais e opostas (*N*), conforme ilustrado na Fig. 4.1..

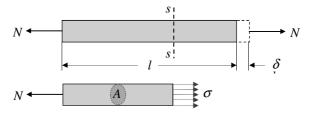


Fig. 4.1. Peça linear em tração.

As expressões para a tensão, deformações e lei de Hooke são óbvias, e podem escrever-se da seguinte forma:

$$\sigma = \frac{N}{A}$$

$$\varepsilon_{l} = \frac{\sigma}{E}$$

$$\varepsilon_{t} = -v\varepsilon_{l} = -\frac{v\sigma}{E}$$

$$\delta = \frac{Nl}{EA}$$
(4.1)

Onde l é o comprimento inicial da barra, A é a área da respetiva secção reta,  $\sigma$ é a tensão normal sobre a secção reta,  $\varepsilon_l$  e  $\varepsilon_l$  são a deformação linear

A expressão para o encurtamento  $\delta_2$  do elemento (2) é semelhante, agora com a carga total  $(P+W_1)$ , em vez de P e, naturalmente,  $l_2$  em vez de  $l_1$ :

$$\delta_2 = \frac{4(P + W_1)l_2}{\pi D dE} + \frac{\mathcal{H}_2^2}{6(D - d)^2 E} \left( D^2 - 3d^2 + 2\frac{d^3}{D} \right)$$

Finalmente, o encurtamento total do conjunto:

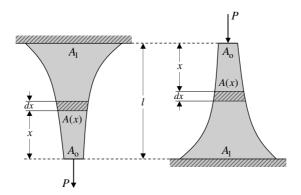
$$\delta = \delta_1 + \delta_2 = \frac{4P(l_1 + l_2) + 4W_1l_2}{\pi D dE} + \frac{\gamma(l_1^2 + l_2^2)}{6(D - d)^2 E} \left(D^2 - 3d^2 + 2\frac{d^3}{D}\right)$$

Ou ainda, substituindo as diferentes grandezas pelos respetivos valores numéricos:

$$\delta = 2.01 \times 10^{-3} m$$

### Problema 4.2.4.

O perfil da peça linear representada na figura é tal que, sob a ação duma carga axial P e do seu próprio peso (peso específico  $\gamma$ ), a tensão é constante ao longo de todo o seu comprimento. Uma peça deste tipo diz-se de *igual resistência*, e o problema põe-se, por exemplo, no dimensionamento de cabos de extração em minas profundas ou de pilares de viadutos muito elevados.



- a)- Determine o perfil da peça linear, A(x).
- b)- Determine o alongamento total ( $\delta$ ) da peça.

# **TORÇÃO DE PEÇAS LINEARES**

### 5.1. RESUMO DA TEORIA

### 5.1.1. Veio cilíndrico de secção circular

Considere-se um veio de secção circular, de material homogéneo e isotrópico, submetido à ação de dois binários de torção ( $M_t$ ) iguais e de sentidos opostos, aplicados nas duas secções extremas, (a) e (b), e atuando nos respetivos planos, Fig. 5.1.. O momento torsor em qualquer secção intermédia entre (a) e (b) é constante e igual a  $M_t$ .

Utilizando as coordenadas cilíndricas  $(r,\theta,z)$ , oriente-se o eixo dos zz segundo a direção axial do veio e designem-se por u e v as componentes do deslocamento  $u_r$  e  $u_\theta$ , segundo as direções radial e tangencial, respetivamente. A componente do vetor deslocamento  $u_z$ , na direção axial, é designada por w.

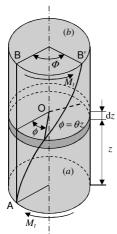


Fig. 5.1. Torção dum veio de secção circular.

Os binários  $M_t$  aplicados produzem uma rotação relativa  $\Phi$  entre as duas secções extremas, de tal modo que a geratriz AB, inicialmente retilínea, deforma-se segundo a configuração duma hélice cilíndrica AB'. Por razões de simetria, a deformação do veio processa-se de tal modo que:

- (i)-Secções retas do cilindro permanecem circulares e planas após a deformação, rodando em torno do respetivo centro O.
- (ii)-Um raio qualquer traçado sobre uma secção reta permanece retilíneo durante a deformação do veio.
- (iii)-O ângulo entre dois quaisquer raios no plano duma secção reta permanece constante durante a deformação do veio.

No caso particular dum tubo de parede delgada (espessura e), Fig. 5.5., em que  $e = R_2 - R_1 \le R_2$ , tem-se:

$$R_2^4 - R_1^4 = (R_2^2 + R_1^2)(R_2 + R_1)(R_2 - R_1) \cong 4R_m^3 e$$
 (5.11)

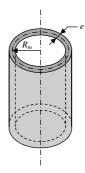


Fig. 5.5. Tubo de parede fina.

onde  $R_m$ =( $R_1$ + $R_2$ )/2 é o raio médio da secção. O momento de inércia polar  $I_z$  é, aproximadamente:

$$I_z \cong 2\pi R_m^3 e = R_m^2 \,\Omega \tag{5.12}$$

onde  $\Omega = 2\pi R_m e$  é a área da secção reta do tubo.

As expressões para a tensão de corte e o ângulo de torção por unidade de comprimento são, respetivamente:

$$\tau \cong \frac{M_t R_m}{I_z} \cong \frac{M_t}{R_m \Omega} \tag{5.13}$$

$$\theta = \frac{M_t}{GI_z} \cong \frac{M_t}{GR_m^2 \Omega} \cong \frac{\tau}{GR_m}$$
 (5.14)

### 5.1.3. Veio prismático (Teoria de Saint-Venant)

Considere-se agora um veio prismático de secção arbitrária, Fig. 5.6., sujeito à ação dum binário torsor  $M_t$ . De acordo com a *teoria de Saint-Venant*, admite-se que cada secção roda sem distorção, em torno do respetivo centróide, de um ângulo  $\phi$  que é proporcional à distância à base fixa (z = 0), isto é, Fig. 5.7.:

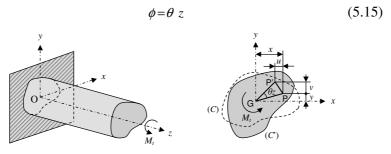


Fig. 5.6. Veio de secção arbitrária.

Fig. 5.7. Rotação da secção.

# TENSÕES DE FLEXÃO EM VIGAS

### 6.1. RESUMO DA TEORIA

### 6.1.1. Introdução

No caso mais geral, uma peça linear pode estar submetida às solicitações indicadas na Fig. 6.1., incluindo:

- (i) Esforço normal, N, que pode ser de tração ou de compressão.
- (ii) Momento fletor,  $M_z$  ou  $M_y$ .
- (iii) Momento torsor,  $M_x$ .
- (iv) Esforço transverso,  $V_z$  ou  $V_y$ .

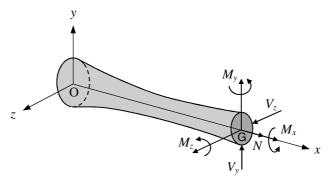


Fig. 6.1. Peça linear de secção variável.

Os esforços de solicitação podem ser classificados em *simples*, se atuam isoladamente, ou *compostos*, se dois ou mais desses esforços atuam em simultâneo. Neste último caso, recorre-se frequentemente à aplicação do *princípio da sobreposição*, analisando a ação de cada uma das solicitações em separado, e adicionando depois os efeitos correspondentes. Peças lineares sujeitas predominantemente a esforços de flexão são habitualmente designadas por *vigas*.

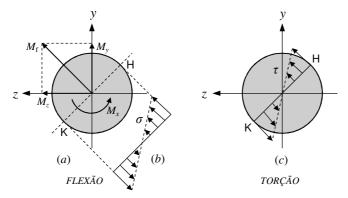


Fig. 6.9. Flexão combinada com torção (secção circular).

Em resultado do momento torsor  $M_x$ , a distribuição das tensões de corte é também linear, conforme o esquema ilustrado na Fig. 6.9.(c). Como os pontos H e K são pontos da periferia da secção, também são pontos críticos em relação à torção. O valor da tensão de corte na periferia é dado pela expressão  $\tau = M_x \times R/I_x$ .

Nos pontos da periferia, o estado de tensão apresenta apenas duas componentes não nulas,  $\sigma$  (paralelamente ao eixo do veio), e  $\tau$  (na direção circunferencial), conforme o esquema da Fig. 6.10..

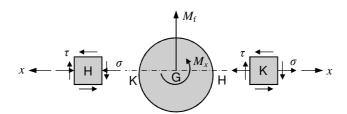


Fig. 6.10. Estado de tensão nos pontos críticos H e K.

Trata-se dum estado plano de tensão, em que a determinação dos respetivos valores característicos (tensões principais, direções principais de tensão, tensões tangenciais máximas, etc.) pode ser feita recorrendo, por exemplo, ao traçado do círculo de Mohr. Na Fig. 6.11. é apresentada a construção do círculo de Mohr para os pontos H e K.

# DEFLEXÃO DE VIGAS ISOSTÁTICAS

### 7.1. RESUMO DA TEORIA

### 7.1.1. Introdução

Na nomenclatura habitualmente utilizada no estudo das vigas à flexão, chama-se *linha elástica* à deformada do eixo da viga. Assim, considere-se a viga ilustrada na Fig. 7.1.(a), solicitada por um conjunto de forças concentradas ( $P_i$ ) e forças distribuídas q(x). Após a deformação, o eixo da viga, que era inicialmente uma linha reta, assume a forma da linha elástica  $y = \delta(x)$  representada na Fig. 7.1.(b).

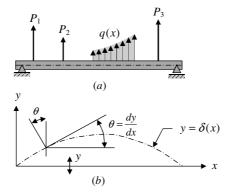


Fig. 7.1. Linha elástica duma viga à flexão.

Para um ponto qualquer ao longo do eixo, o *deslocamento vertical ou deflexão* ( $\delta$ ) e a *rotação* ( $\theta$ ) da secção reta da viga são numericamente iguais, respetivamente, à ordenada (y) da linha elástica e ao declive (dy/dx) da tangente à curva no ponto considerado. Há vários métodos para a análise do problema, dos quais serão apresentados aqui o método da *integração da elástica*, o método da *viga conjugada* e um terceiro método que recorre à aplicação dos chamados *teoremas energéticos*.

- c)-Considerar a viga conjugada com o mesmo comprimento da viga real e tomar os momentos  $M(x)/EI_z$  como sendo a carga conjugada,  $q_c$ .
- *d*)-Representar os apoios da viga conjugada, de acordo com o esquema apropriado da Tabela 7.1., e calcular para a viga conjugada:
- e)-As reações nos apoios.
- f)-O esforço cortante  $V_c$  para a secção considerada.
- g)-O momento fletor  $M_c$  na mesma secção.
- h)-Por último, a flecha y e a rotação  $\theta$  para uma secção qualquer da viga real serão dados por:

$$y = M_c \quad e \quad \theta = -V_c \tag{7.12}$$

O método da viga conjugada permite, assim, o cálculo de deslocamentos sem necessidade de determinar as constantes de integração requeridas pelo método da integração da equação diferencial da elástica. O método é aplicável a vigas de apoios múltiplos, como se indica na Fig. 7.4..

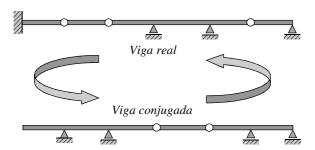


Fig. 7.4. Reciprocidade das condições fronteira.

### 7.1.4. Aplicação dos teoremas energéticos

De acordo com o que ficou estabelecido na secção 3.1.10. do capítulo 3, para o caso geral, a energia elástica de deformação num corpo elástico é dada pela expressão seguinte:

$$U = \frac{1}{2} \iiint_{V} \left( \sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + \sigma_{zz} \varepsilon_{zz} + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{xz} \gamma_{xz} \right) dV$$

# VIGAS ESTATICAMENTE INDETERMINADAS E ENCURVADURA

### 8.1. RESUMO DA TEORIA

### 8.1.1. Introdução

Nos capítulos 6 e 7 foram abordados os problemas da determinação das tensões e das deformações em vigas para vários tipos de carregamentos e suportes. Em todos os casos considerados anteriormente, foi sempre possível determinar as reações nos apoios usando apenas as equações de equilíbrio da estática. Tais vigas são habitualmente classificadas como vigas *isostáticas* ou vigas *estaticamente determinadas*.

No presente capítulo serão analisados outros tipos de vigas, em que o número de reações desconhecidas excede o número de equações de equilíbrio independentes disponíveis, sendo necessário utilizar equações adicionais, baseadas na deformação da viga. Nestes casos, as vigas são classificadas como vigas *hiperestáticas* ou vigas *estaticamente indeterminadas*.

Embora somente vigas estaticamente indeterminadas sejam analisadas neste capítulo, os princípios e os conceitos fundamentais aqui utilizados têm aplicações muito mais amplas na generalidade dos outros tipos de estruturas hiperestáticas.

### 8.1.2. Tipos de vigas estaticamente indeterminadas

Na Fig. 8.1. estão representados os casos mais comuns de vigas estaticamente indeterminadas, os quais ilustram bem a natureza dum sistema hiperestático. No caso da Fig. 8.1(*a*), por exemplo, trata-se de uma viga encastrada numa das extremidades e apoiada na outra, muitas vezes também designada por viga em *consola apoiada*. As reações, neste caso, são as

A estrutura que resulta da remoção das ligações redundantes diz-se a *estrutura livre* ou *estrutura primária*. Esta deve constituir sempre uma estrutura estaticamente determinada ou isostática, permitindo a obtenção dos esforços internos, tensões e deslocamentos em função das reações redundantes que foram libertadas.

A situação representada na Fig. 8.1.(b) corresponde a uma viga consola com apoio elástico ou flexível na extremidade B e é semelhante ao caso anterior, com a única diferença de que a reação em B é proporcional ao deslocamento nesse ponto. As reações indeterminadas são novamente  $R_A$ ,  $H_A$ ,  $M_A$  e  $R_B$ , dispondo-se também e apenas das mesmas três equações da estática.

Na Fig. 8.1.(c) está representada uma viga encastrada nas duas extremidades ( $viga\ biencastrada$ ), tendo como reações desconhecidas quatro forças ( $R_A$ ,  $H_A$ ,  $R_B$  e  $H_B$ ) e dois momentos ( $M_A$  e  $M_B$ ). As habituais três equações da estática têm de ser complementadas, neste caso, por outras três equações baseadas na deformação da viga. Diz-se que a viga é estaticamente indeterminada do terceiro grau. Possíveis vigas primárias para este caso podem ser consideradas, por exemplo, qualquer uma das situações representadas na Fig. 8.3..

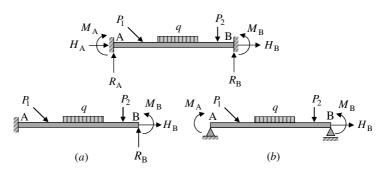


Fig. 8.3. Viga biencastrada e respetivas primárias.

Se forem selecionadas como redundantes as três reações na extremidade B, por exemplo, e removidas as restrições correspondentes, obter-se-á uma viga primária em consola, Fig. 8.3.(a). No caso de se optar por escolher como redundantes os dois momentos de encastramento e a reação horizontal em B, a viga primária correspondente é uma viga simplesmente apoiada, Fig. 8.3.(b).

## APÊNDICE A

### PROPRIEDADES DE MATERIAIS CORRENTES

|                                             |                           |                                            | Constantes Elásticas   |                          |                  | Tensão Máxima   |                |                | Tensão Cedência |                |
|---------------------------------------------|---------------------------|--------------------------------------------|------------------------|--------------------------|------------------|-----------------|----------------|----------------|-----------------|----------------|
| Material                                    | Massa<br>Espec<br>(kg/m³) | C. Exp.<br>Térm.<br>(10 <sup>-6</sup> /°C) | Mód.<br>Young<br>(GPa) | Mód.<br>Rigidez<br>(GPa) | Coef.<br>Poisson | Tração<br>(MPa) | Comp.<br>(MPa) | Corte<br>(MPa) | Tração<br>(MPa) | Corte<br>(MPa) |
| Aços                                        |                           |                                            |                        |                          |                  |                 |                |                |                 |                |
| Estrutural (ASTM-A36                        | 7860                      | 11.7                                       | 210                    | 77.2                     | 0.30             | 400             | 400            | -              | 250             | 145            |
| Baixa Liga/Alta Resis:<br>ASTM-A709 Cl. 345 | 7860                      | 11.7                                       | 210                    | 77.2                     | 0.30             | 450             | 450            | -              | 345             | -              |
| ASTM-A913 Cl. 450                           | 7860                      | 11.7                                       | 210                    | 77.2                     | 0.30             | 550             | 550            | -              | 450             | -              |
| ASTM-A992 Cl. 345                           | 7860                      | 11.7                                       | 210                    | 77.2                     | 0.30             | 450             | 450            | -              | 345             | -              |
| Temperado e Revenido:<br>ASTM-A709 Cl. 690  | 7860                      | 11.7                                       | 210                    | 77.2                     | 0.30             | 760             | 760            | -              | 690             | -              |
| Inoxidável, AISI 302:<br>Laminado a Frio    | 7920                      | 17.3                                       | 190                    | 75                       | 0.27             | 860             | 860            | -              | 520             | -              |
| Recozido                                    | 7920                      | 17.3                                       | 190                    | 75                       | 0.27             | 655             | 655            | -              | 260             | 150            |
| Aço de Reforço:                             |                           |                                            |                        |                          |                  |                 |                |                |                 |                |
| Média Resistência                           | 7860                      | 11.7                                       | 210                    | 77.0                     | 0.30             | 480             | 480            | -              | 275             | -              |
| Alta Resistência                            | 7860                      | 11.7                                       | 210                    | 77.0                     | 0.30             | 620             | 620            | 1              | 415             | -              |
| Ferro Fundido                               |                           |                                            |                        |                          |                  |                 |                |                |                 |                |
| F. Fundido Cinzento<br>4.5%C, ASTM A-48     | 7200                      | 12.1                                       | 69                     | 28                       | 0.23             | 170             | 655            | 240            | -               | -              |
| F. Fundido Maleável<br>2%C,1%Si, ASTM A-47  | 7300                      | 12.1                                       | 165                    | 65                       | 0.27             | 345             | 620            | 330            | 230             | -              |
| Ligas de Alumínio                           |                           |                                            |                        |                          |                  |                 |                |                |                 |                |
| L 1100-H14 (99%Al)                          | 2710                      | 23.6                                       | 70                     | 26                       | 0.35             | 110             | 110            | 70             | 95              | 55             |
| L 2014-T6                                   | 2800                      | 23.0                                       | 75                     | 27                       | 0.39             | 455             | 455            | 275            | 400             | 230            |
| L 2024-T4                                   | 2800                      | 23.2                                       | 73                     | -                        | -                | 470             | 470            | 280            | 325             | -              |
| L 5456-H116                                 | 2630                      | 23.9                                       | 72                     | -                        | -                | 315             | 315            | 185            | 230             | 130            |
| L 6061-T6                                   | 2710                      | 23.6                                       | 70                     | 26                       | 0.35             | 260             | 260            | 165            | 240             | 140            |
| L 7075-T6                                   | 2800                      | 23.6                                       | 72                     | 28                       | 0.29             | 570             | 570            | 330            | 500             | -              |

# MECÂNICA DOS MATERIAIS E ESTRUTURAS LINEARES TEORIA E APLICAÇÕES

J. F. SILVA GOMES

#### Sobre a obra

Nesta obra são apresentadas técnicas e métodos para o estudo e dimensionamento de elementos estruturais lineares, designadamente barras em tração e compressão, torção de veios e flexão de vigas. O conteúdo do livro está dividido em oito capítulos. Os primeiros três capítulos são dedicados aos conceitos fundamentais da teoria da elasticidade e os restantes cinco a problemas específicos de engenharia de estruturas, designadamente solicitação axial e torção de peças lineares, tensões e deformações de vigas em flexão e problemas estaticamente indeterminados e encurvadura. Cada capítulo inclui uma breve introdução teórica, um conjunto de problemas detalhada e pedagogicamente resolvidos e um número de problemas propostos, com indicação das respetivas soluções. O livro inclui também cinco apêndices com tabelas e informações úteis ao projetista, designadamente sobre propriedades de materiais de construção, fórmulas matemáticas, propriedades de áreas planas, flexão de vigas e perfis de aço laminado.

#### Sobre o autor

### J. F. Silva Gomes

Joaquim Francisco da Silva Gomes nasceu em V.N. Gaia a 10 de Janeiro de 1948. Obteve a sua graduação em Engenharia Mecânica pela Universidade do Porto em 1971, seguida de Mestrado e Doutoramento em Engenharia Mecânica pelo UMIST/ Universidade de Manchester (Reino Unido). Trabalha na Faculdade de Engenharia da Universidade do Porto há mais de 50 anos, onde os seus tópicos de interesses no ensino e investigação científica estiveram sempre ligados às áreas da Mecânica dos Sólidos/Resistência dos Materiais, Impacto e Mecânica Experimental. Professor Catedrático desde 1989, é autor de cinco livros, várias dezenas de artigos científicos em revistas e conferências internacionais e editor de mais de vinte *proceedings* de conferências e congressos de engenharia.

www.**engebook**.pt

engebook