

TURBOMÁQUINAS

Uma abordagem moderna

José C. Páscoa

TURBOMÁQUINAS

Uma abordagem moderna

José C. Páscoa

Autor

José C. Páscoas

Título

Turbomáquinas - Uma abordagem moderna

Editora

Publindústria, Edições Técnicas Praça da Corujeira n.º 38 · 4300-144 PORTO www.publindustria.pt

Distribuidor

Engebook - Conteúdos de Engenharia e Gestão Tel. 220 104 872 · Fax 220 104 871 E-mail: apoiocliente@engebook.com · www.engebook.com

Revisão

Diogo Resende

Publindústria, Produção de Comunicação, Lda.

Design de capa

Publindústria, Produção de Comunicação, Lda.

Impressão Impresso em Espanha Julho, 2017

Depósito Legal 426487/17

A **cópia ilegal** viola os direitos dos autores. Os prejudicados somos todos nós.

Copyright © 2017 | Publindústria, Produção de Comunicação, Lda.

Todos os direitos reservados a Publindústria, Produção de Comunicação, Lda.

Nenhuma parte desta publicação poderá ser reproduzida, no todo ou em parte, sob qualquer forma ou meio, seja eletrónico, mecânico, de fotocópia, de gravação ou outros sem autorização prévia por escrito do autor.

Este livro encontra-se em conformidade com o novo Acordo Ortográfico de 1990, respeitando as suas indicações genéricas e assumindo algumas opções específicas.

Para uma maior coerência ortográfica, e nos casos em que esta situação se verifique, converteram-se todos os textos transcritos à nova ortografia, independentemente de a edição original ser ou não anterior à adoção do novo Acordo Ortográfico.

CDL

621.22 Engenharia mecânica. Máquinas hidráulicas.

ISBN

978-989-723-241-1 (Papel) 978-989-723-242-8 (E-book)

Engebook - Catalogação da publicação

Família: Engenharia Mecânica

Subfamília: Caldeiraria, Válvulas e Bombas

TURBOMÁQUINAS

Uma abordagem moderna

José C. Páscoa

Nota Introdutória

Os livros de texto sobre a temática das turbomáquinas, em língua portuguesa, não são muito abundantes. A maioria dos que existem são traduções com origem em textos de língua alemã, os mais antigos, ou inglesa, no caso dos mais recentes. Alguns colegas do Brasil, com atividade profissional de reconhecido mérito nesta indústria, escreveram ou traduziram textos sobre máquinas de fluxo há quase três décadas. É, portanto, essencial que em paralelo com a abordagem prática se apresente também um adequado formalismo físico-matemático. Este deve ser rigoroso e enquadrar os avanços mais recentes neste ramo do conhecimento.

Na verdade, os últimos anos têm constituído uma época de grande progresso no domínio dos diversos tipos de turbomáquinas. Estes avanços, que estão refletidos neste texto, dividem-se em dois ramos principais: num melhor conhecimento sobre a física do escoamento e; no surgimento das ferramentas de dinâmica dos fluidos computacional. Pela sua importância crescente é dedicado um capítulo inteiro a este segundo tema.

Este livro foi escrito para apoiar o ensino de uma disciplina de nível avançado em turbomáquinas. Nesse sentido, pressupõe-se que o leitor tem conhecimentos anteriores de mecânica dos fluidos e termodinâmica. A disciplina de turbomáquinas pode situar-se ao nível do 4º ano de ensino superior, ou primeiro ano de mestrado. Este tema é tratado em diversos cursos, nomeadamente; em engenharia mecânica, eletromecânica, aeronáutica, aeroespacial, civil (ramo hidráulica) e afins. O texto pode ainda ser usado pelo Engenheiro na sua atividade diária, nas empresas, para auto-formação, atualização, e consulta.

A nível internacional, e dentro do universo da língua portuguesa, este texto é atualmente o livro base adotado para a unidade curricular de Mecânica dos Fluidos III (Turbomáquinas), ensinada num Curso de Especialização aos estudantes do 4^o ano do Curso de Engenharia Mecânica, do Instituto Superior Técnico Militar (Angola), no âmbito de um protocolo de cooperação entre o ISTM e a Universidade da Beira Interior.

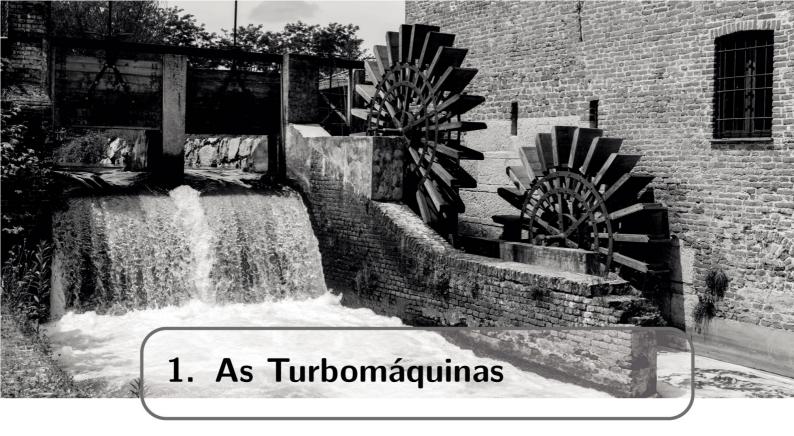
O autor gostaria de agradecer a todos os seus alunos, colegas, e professores, que nos últimos 25 anos muito contribuíram para que este texto visse a luz do dia. Para a Manuela, Catarina, e Alexandre, sempre os mais sacrificados nestas aventuras, um profundo obrigado.

	Nota Introdutória	. V
	Conteúdo	vii
1	As Turbomáquinas	. 1
1.1	Introdução	1
1.2	Classificação das turbomáquinas	1
1.3	Breve perspectiva histórica	3
1.3.1	Turbinas hidráulicas	. 8
1.3.2	Turbinas a vapor	
1.3.3	Turbinas a gás	12
2	Dinâmica de fluidos em turbomáquinas	17
2.1	A formulação físico-matemática	17
2.1.1	Conservação da massa	17
2.2	A conservação da quantidade de movimento	18
2.2.1	Conservação do momento angular	18
2.2.2	Equação de Euler	19
2.2.3	A equação de Euler e a equação da conservação da energia	21

viii Nota Introdutória

2.2.4	Recapitulação de algumas noções de termodinâmica	23
2.2.5	Razão de pressão e de massa específica	25
2.2.6	Entropia	26
2.3	Definições de rendimento	27
2.3.1	O rendimento isentrópico	27
2.3.2	Rendimento mecânico	31
2.3.3	Rendimento volumétrico	31
2.3.4	Rendimento global	31
2.4	Os diversos tipos de trabalho	32
2.4.1	O trabalho isentrópico	32
2.4.2	O trabalho efetivo	32
2.4.3	O trabalho politrópico	32
2.5	Exemplos de aplicação	36
3	Turbomáquinas centrífugas	43
3.1	Introdução	43
3.2	O ventilador centrífugo	44
3.2.1	Os diferentes tipos de rotor dos ventiladores	45
3.2.2	A forma e o número de pás	46
3.2.3	Considerações sobre a voluta	48
3.2.4	Ponto de funcionamento da máquina	48
3.2.5	Regulação de ventiladores, compressores e bombas	50
3.2.6	Desempenho de ventiladores em série e em paralelo	54
3.3	Triângulos de velocidade	56
3.4	Equação de Euler	58
3.5	Comentários sobre o trabalho específico	59
3.6	Escorregamento, o escoamento real num rotor	60
3.6.1	Cálculo do escorregamento	64
3.7	Análise dos ângulos das pás	66
3.7.1	Ângulo das pás à saída do rotor eta_{2b}	66
3.8	Estudo em detalhe do compressor centrífugo	69
3.8.1	Tubeira de entrada	70
3.8.2	O indutor	70
3.8.3	O rotor de um compressor centrífugo	
3.8.4	O difusor e a voluta	
3.8.5	Análise do escorregamento em rotores centrífugos	
3.8.6	Considerações sobre o escoamento entre pás 1D	
3.8.7	Aumento de temperatura nos andares	78

Nota Introdutória ix


3.8.8	Análise do aumento de pressão no andar	. 79
3.8.9	Determinação do número de Mach à saída do rotor	. 79
3.8.10	Análise do escoamento no rotor	. 80
3.8.11	O difusor	. 84
3.8.12	Característica do compressor, perda e instabilidade	. 85
3.9	A bomba centrífuga	88
3.9.1	O rotor da bomba	. 88
3.9.2	Altura de energia da bomba	. 91
3.9.3	Desempenho da bomba centrífuga	. 92
3.9.4	Regulação e ponto de funcionamento	. 93
3.10	A cavitação	94
3.10.1	Parâmetro de cavitação	. 95
3.10.2	Efeitos da cavitação	. 95
3.10.3	A cavitação em bombas	. 96
3.10.4	Condições para ocorrência de cavitação e NPSH	. 96
3.10.5	Ângulos ótimos para uma bomba centrífuga	. 99
3.10.6	Cavitação na folga periférica	. 99
3.10.7	Cavitação fora das condições nominais	. 99
3.10.8	Métodos para atenuar a cavitação	102
3.11	Exemplos de aplicação	102
4	Análise dimensional	123
4.1	O teorema π de Vaschy-Buckingham	123
4.2	Semelhança	125
4.3	Aplicação ao estudo de turbomáquinas incompressíveis	126
4.3.1	Leis de afinidade	128
4.3.2	Velocidade específica e número de forma	129
4.3.3	Tipos de rotor	131
4.3.4	Coeficientes ϕ e ψ	133
4.3.5	Diagrama de Cordier	133
4.3.6	Dimensões gerais do rotor e coeficiente de velocidade à saída	135
4.3.7	Coeficientes adimensionais para andares	137
4.3.8	O número de Froude e os parâmetros de cavitação	138
4.4	Aplicação em máquinas de escoamento compressível	139
	• •	
4.5	Relação entre protótipos e modelos	141

x Nota Introdutória

5	Turbomáquinas axiais	147
5.1	Os triângulos de velocidade para máquinas axiais	147
5.1.1	Nomenclatura e convenção de sinais	149
5.2	O triângulo normal da turbomáquina axial	149
5.3	Caracterização dos triângulos de velocidade	150
5.3.1	O coeficiente de carga	151
5.3.2	O coeficiente de caudal	152
5.3.3	O grau de reação	152
5.4	O grau de reação em turbinas	155
5.4.1	Expressões para o grau de reação	157
5.5	Triângulos de velocidade especiais	158
5.5.1	Grau de reação de 100%, R=1	158
5.5.2	Grau de reação de 50%, R=0.5	
5.5.3	Grau de reação nulo, R=0	161
5.6	Os compressores axiais	162
5.7	Análise do rendimento	165
5.7.1	Escolha dos coeficientes de carga, de caudal, e do grau de reação .	165
5.7.2	Considerações teóricas e empíricas	165
5.7.3	Correlações úteis para os coeficientes de perdas	167
5.8	Cascatas de pás	168
5.8.1	A solidez ou o passo da cascata	
5.8.2	Considerações gerais sobre a forma das pás	
5.9	Operação fora do ponto nominal	175
5.10	Características em off-design	175
5.10.1	Compressor a operar fora do ponto de projeto	176
5.10.2	A turbina em modo de <i>off-design</i>	179
5.11	Difusão do escoamento	180
5.12	Exemplos de aplicação	181
6	Turbinas hidráulicas	199
6.1	Energia hidroelétrica	199
6.2	Classificação dos diferentes tipos de turbina	200
6.2.1	A turbina Pelton	201
6.2.2	A turbina Francis	202
6.2.3	A turbina Kaplan	203
6.2.4	Turbina a funcionar como bomba	203

Conteúdo xi

6.3	Projeto das pétalas da Pelton	204
6.4	Regulação da turbina Pelton	209
6.5	A operação da turbina Francis	211
6.6	Formas do canal meridional dos rotores Francis	212
6.7	Contorno do rotor Francis	212
6.8	Rotor e pás de uma turbina Kaplan	216
6.9	O difusor à saída das turbinas	217
6.10	Comparação entre os quatro diferentes tipos de turbina	221
6.11	Exemplos de aplicação	222
7	Análise e projeto numérico de turbomáquinas	233
7.1	Projeto na indústria de turbinas de gás	233
7.1.1 7.1.2 7.1.3	Gerindo a complexidade do projeto computacional de turbinas de gá Influência do projeto computacional nos aspetos económicos Análise computacional do escoamento num andar de baixa pressão	s 237 242 242
7.1.4	Projeto computacional da aerodinâmica das pás de turbomáquinas	246
7.2	Projeto inverso de turbomáquinas	248
7.2.1	Visão bidimensional 2D	250
7.2.2	Escolha da distribuição de velocidade tangencial média como variáv	
7.2.3	projeto	250 251
7.2.4	Projeto de cascatas de pás em 3 D	258
7.2.5	Exemplo de modelação computacional em modo de análise	268
7.2.6	Exemplo de projeto 3D	268
	Bibliografia	275
	Índice Remissivo	279

1.1 Introdução

As turbomáquinas formam uma importante família de dispositivos que utiliza um fluido para efetuar uma transformação de energia. De modo geral, uma turbomáquina define-se como um dispositivo que permite fornecer ou retirar energia de um escoamento por ação dinâmica de um elemento rotativo, que por isso se designa de rotor. O prefixo turbo vem do latin turbinis que significa o que roda, ou em rotação.

Podemos encontrar as turbomáquinas em múltiplas e diversas aplicações que necessitam de efetuar uma conversão de energia. Essencialmente, podemos identificar três tipos de aplicações: *Produção de energia elétrica*, turbinas a gás, turbinas a vapor, turbinas hidráulicas; *Sistemas de propulsão*, turbinas a gás para aviação, turbo-compressores para locomotivas e automóveis, turbinas a gás para navios; *Indústria*, compressores centrífugos, turbo-compressores para motores diesel, turbinas a vapor, turbinas a gás, bombas e ventiladores.

1.2 Classificação das turbomáquinas

Há várias formas de classificar as turbomáquinas. A primeira, mais óbvia, é a que corresponde ao sentido da transferência de energia. Podem então dividir-se as turbomáquinas em duas categorias principais:

- Turbomáquinas motoras que fornecem energia ao fluido (entalpia). E neste grupo encontramos os compressores, os ventiladores e as bombas;
- Turbomáquinas movidas que retiram energia ao fluido para a utilizar de modo a produzir trabalho mecânico. E, neste caso, referimo-las sob a designação de turbinas, que podem ser de diverso tipo.

Podemos ainda efetuar uma outra classificação das turbomáquinas, neste caso em função da direção principal do escoamento em relação ao seu eixo de rotação. De acordo com este critério vamos considerar:

- Turbomáquinas axiais. São aquelas cuja direção do escoamento é paralela ao eixo de rotação da máquina;
- Turbomáquinas radiais ou centrífugas. São aquelas onde uma parte importante do escoamento, à entrada ou à saída, ocorre na direção normal ao eixo de rotação, na direção radial;
- Turbomáquinas mistas. Correspondem a máquinas onde a direção do escoamento, à entrada ou à saída, compreende componentes axiais e radiais.

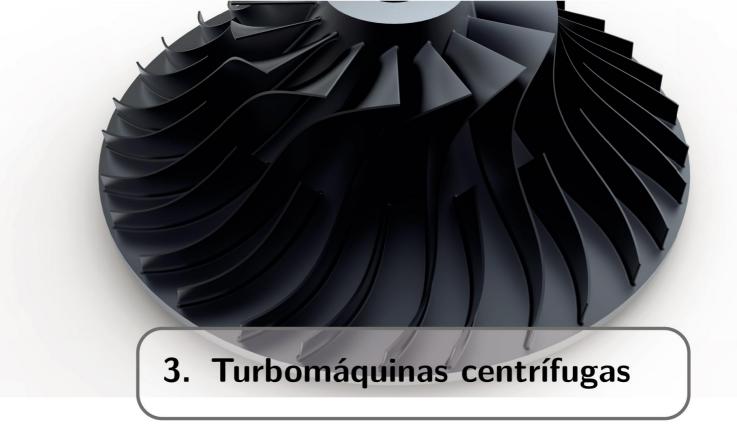
Mas podemos fazer ainda um terceiro tipo de classificação, em função da natureza da transferência de energia. Assim podemos classificar em:

- Turbomáquinas de impulso, ou ação. São aquelas onde o fluido sofre apenas uma variação de direção do escoamento no rotor (deflexão), sem ocorrer variação significativa de pressão;
- Turbomáquinas de reação. Correspondem àquelas onde a transferência de energia entre o fluido e o rotor está associada com uma variação da pressão, sem qualquer variação de velocidade;
- Turbomáquinas de tipo combinado. Nestas máquinas o fluido sofre uma mudança de pressão e de velocidade quando passa através do rotor.

Finalmente, é ainda possível classificar as turbomáquinas em função do tipo de instalação. Distinguem-se, nesse caso, dois tipos:

- Turbomáquinas de tipo fechado. Este é o caso, por exemplo, das bombas centrífugas, das turbinas a gás, entre outras, nas quais o fluido circula no interior de uma carcaça ou conduta;
- Turbomáquinas de tipo aberto. Nestas incluem-se as turbinas eólicas, assim como as hélices de avião ou navio.

As figuras 1.1-a) e b) apresentam um motor de turbina a gás em corte. Esta máquina é usada nos modernos aviões comerciais, o que pode ser logo identificado pelo enorme fan (ventilador de alta pressão)


na entrada. A maior parte do escoamento de ar dá-se entre as secções 1) e 2), na zona de bypass. Uma parte do escoamento passa por dois compressores, de baixa e alta pressão, antes de entrar na câmara de combustão. A energia é então extraída em duas turbinas, de alta e baixa pressão. Esta energia alimenta os compressores e o fan externo. Neste tipo de configuração existem dois veios com rotações diferentes, mas interligados. Cada um dos compressores e turbinas possuí vários andares. A figura 1.1-c) apresenta uma vista exterior de um motor General Electric GEnx, este é usado em aviões tipo Boeing 747-8.

Em contraste com a máquina axial anterior é agora apresentada uma máquina centrífuga, ou radial. Trata-se de uma bomba e é, nas suas múltiplas formas, a turbomáquina mais usada em todo o mundo. A figura 1.2-a) apresenta o desenho de projeto de um rotor com 12 pás. É de notar a geometria das pás em forma de arco circular. Na figura 1.2-b) é apresentada uma bomba de dupla entrada (uma saída única na vista frontal que é apresentada, e duas entradas na parte de trás da imagem). As máquinas de dupla entrada permitem reduzir a cavitação nessas entradas, e ajudam ainda a equilibrar melhor a força axial gerada sobre o veio do rotor. As figuras 1.2-c) e d) apresentam o contraste entre um rotor fechado e aberto. No rotor fechado as pás são encastradas entre a capa traseira e frontal, no caso do rotor aberto apenas existe capa traseira. É interessante observar, indicado com o número 1, a existência de um indutor no caso da bomba da figura 1.2-c). Este indutor é um rotor axial, com um pequeno número de pás, que é colocado imediatamente antes do rotor centrífugo, e que roda à mesma velocidade deste. O objetivo de introduzir este tipo de indutor é o de reduzir os problemas de cavitação, o que é feito pelo facto de este indutor aumentar a pressão estática antes do rotor. O escoamento de rotação induzido no fluido (na direção de rotação do rotor) é fundamental para conseguir esse efeito.

1.3 Breve perspectiva histórica

Coube a Charles Parsons a honra de proferir, em 1911, a célebre Rede Lecture na Universidade de Cambridge. Nesta conferência foi feita uma perspetiva histórica do desenvolvimento das turbomáquinas, em particular das que funcionam a vapor.

Pode atribuir-se a *Héron* de Alexandria a invenção do antepassado das turbomáquinas térmicas modernas. Por volta do ano 20 A.C. Alexandria era uma província do Império Romano, gozando de um pico de prosperidade, com uma significativa concentração de riqueza e de saber. Nesta terra de *Euclides*, *Heronis Alexandrini* escreveu o seu texto

Uma bomba, um ventilador, ou um compressor centrífugo são máquinas que produzem pressão na saída. Estes dispositivos movimentam líquidos ou gases desde um raio inferior, de entrada, até um raio superior, de saída. Esse deslocamento é assegurado pelas forças centrífugas que são geradas pelo movimento do veio do rotor, sendo estas máquinas classificadas como movidas. O que implica que consomem energia, a qual deverá ser fornecida ao veio.

3.1 Introdução

O aumento de pressão que é criado nas máquinas radiais é essencialmente originado na ação centrífuga, e pode ser descrito matematicamente por $\frac{U_2^2-U_1^2}{2}$. Além deste efeito há ainda uma componente de difusão, que é normalmente de menor importância. Uma turbomáquina deste tipo pode ser classificada como sendo ventilador ou compressor, em função do maior ou menor nível de incremento de pressão. Claro que a classificação é imediatamente de bomba se ela funcionar com um líquido. Os ventiladores são, geralmente, dispositivos do tipo de baixa pressão que são utilizados em sistemas de ventilação. Existem ainda os ventiladores de alta pressão (também designados de sopradores, ou blowers no inglês) e que são máquinas onde o incremento de pressão é da ordem de 2-3

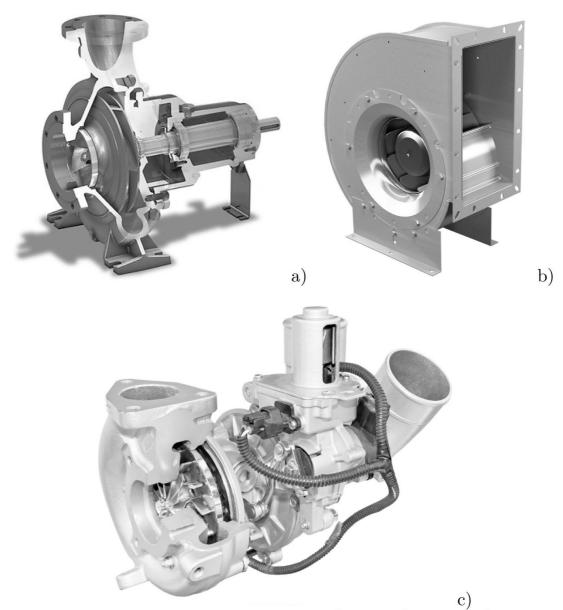


Figura 3.1: Os diferentes tipos de máquinas centrífugas: a) Bomba; b) Ventilador; c) Compressor inserido num turbocompressor de automóvel [shutterstock, chainfoto24].

vezes a de entrada. Nos compressores o incremento de pressão é muito superior. No entanto há, amiúde, alguma zona cinzenta de classificação no que diz respeito a distinguir entre um compressor e um ventilador de alta pressão. A figura 3.1 mostra as diferenças entre um ventilador, uma bomba, e um compressor.

3.2 O ventilador centrífugo

Estas máquinas produzem geralmente valores baixos de pressão, em torno de $0.5 \, kPa - 10 \, kPa$, ou seja, $5 \, mm - 1 \, 000 \, mm$ de H_2O . Em termos de trabalho específico estes valores correspondem a um intervalo entre $40 - 8 \, 000 \, m^2/s^2$ e o escoamento pode considerar-se incompressí-

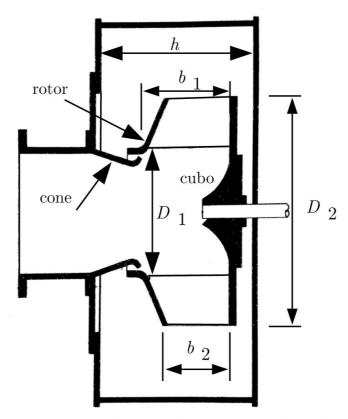


Figura 3.2: Vista em corte de um ventilador centrífugo com indicação das dimensões mais importantes.

vel. O trabalho específico é baixo porque eles também operam a valores baixos de velocidade tangencial $U_2 = 10 - 80 \, m/s$. O valor baixo de U_2 influencia de forma significativa o seu modo de construção, que é mais simplificada. Em geral, o escoamento que provém do rotor é descarregado na voluta sem qualquer sistema difusor intermédio. A construção típica de um ventilador, com as dimensões características, é mostrada na figura 3.2, sendo geralmente feita de juntas soldadas ou aparafusadas.

3.2.1 Os diferentes tipos de rotor dos ventiladores

A figura 3.3 apresenta quatro tipos diferentes de rotor para ventiladores. O rotor tipo (A) é adequado para baixas pressões até $1\,kPa$, o tipo (B) para pressões intermédias entre $1-3\,kPa$ e o tipo (C) para pressões mais elevadas entre $3-10\,kPa$. Os rotores de tipo (A) têm pás curvadas e viradas para a frente, na direção de rotação, os tipo (B) têm as pás radiais ou curvadas e viradas para trás, e os tipo (C) têm pás curvadas para trás. Cada uma destas curvaturas é projetada de modo a obter o maior rendimento possível destas máquinas.

Os rotores tipo (A) têm geralmente uma largura constante e igual a, aproximadamente, $0.5D_2$. Este tipo de rotor é o que tem a menor resistência e rigidez mecânicas. As velocidades periféricas deste rotor

β_{2b}	z 18	D_2/D_1	Exp.	Busemann (σ)	Stodola (σ)	Ctanita (-)
200.000.000	10			()	biodola (0)	Stanitz (σ)
35	10		0.88	0.88	0.86	0.85
40	16	1.76	0.84	0.86	0.84	0.84
40	32	1.76	0.95	0.92	0.92	0.92
50	16		0.91	0.81	0.80	0.83
64	16		0.87	0.83	0.79	0.85
90	16	1.42	0.87	0.84	0.80	0.88
90	18		0.90	0.86	0.83	0.89
90	19		0.90	0.87	0.83	0.90

Tabela 3.1: Comparação entre as diferentes formulações propostas para determinar o escorregamento. (*Exp*: T. B. Ferguson, *The Centrifugal Compressor Stage*, Butterworths, 1963.)

onde a e b são função da razão de raios $\frac{r_2}{r_1}$, de β_{2b} e de z. Analiticamente demonstrou-se que,

$$\frac{r_2}{r_1} \ge e^{(2\frac{\pi}{2}sin\beta_{2b})},\tag{3.23}$$

sendo b = 1 e a uma função de β_{2b} e de z.

Um outro nome conhecido é o de *Stanitz*. Com base numa análise teórica feita para diversos rotores ele chegou a uma equação similar à de *Stodola*,

$$\sigma = 1 - \frac{0.63\pi}{z(1 - \phi_2 \cot \beta_{2b})} \tag{3.24}$$

A tabela 3.1 apresenta uma comparação dos fatores de escorregamento calculados usando as diferentes formulações. A experiência mostra que, para um rotor com um determinado número de pás, o fator de escorregamento aumenta à medida que no escoamento aumentam as zonas de separação. O escorregamento aumenta ainda com a diminuição do caudal, o que se pode justificar pelo facto de nessas circunstâncias haver maior separação na zona da entrada do indutor.

3.8.6 Considerações sobre o escoamento entre pás 1D

O caudal máximo que um compressor centrífugo pode fornecer está relacionado com a área de secção da entrada. A velocidades elevadas, onde

o caudal é maior, o desempenho do compressor diminui devido ao surgimento de ondas de choque quando as velocidades são superiores à do som. Portanto, como já referido, o indutor ou as pás de pré-guiamento têm de ser devidamente projetadas para evitar picos no número de Mach.

Consideremos a hipótese de escoamento uniforme à entrada $C_{1m} \neq f(r)$, e que o escoamento seja estacionário, inviscido e incompressível, então o caudal volúmico à entrada pode obter-se de

$$Q = C_{1m}A_1 = C_{1m}\pi(r_{1t}^2 - r_{1h}^2), (3.25)$$

$$C_{1m} = \sqrt{W_{1t}^2 - \omega^2 r_{1t}^2}, \text{ se } C_{1u} = 0,$$
 (3.26)

$$Q = \pi (r_{1t}^2 - r_{1h}^2) \sqrt{W_{1t}^2 - \omega^2 r_{1t}^2}.$$
 (3.27)

A condição que permite determinar o caudal máximo, para determinado valor de W_{1t} , pode ser obtida diferenciando a equação anterior em relação a r_{1t} e igualando-a a zero,

$$\frac{1}{\pi} \frac{\partial Q}{\partial r_{1t}} = 2r_{1t} \sqrt{W_{1t}^2 - \omega^2 r_{1t}^2} - \frac{\omega^2 r_{1t} (r_{1t}^2 - r_{1h}^2)}{\sqrt{W_{1t}^2 - \omega^2 r_{1h}^2}} = 0$$
 (3.28)

de forma que,

$$tan\beta_{1t} = \frac{C_{1m}}{U_{1t}} = \frac{1}{2}\sqrt{\left(1 - (\frac{r_{1h}}{r_{1t}})^2\right)}.$$
 (3.29)

Por outro lado, se o escoamento é considerado compressível, então

$$\dot{m} = \rho_1 C_{1m} \pi (r_{1t}^2 - r_{1h}^2), \tag{3.30}$$

e a velocidade relativa à entrada, na periferia, é dada por

$$W_{1t} = \sqrt{U_{1t}^2 - C_{1m}^2}$$
 ou, $U_{1t} = \sqrt{(W_{1t}^2 - C_{1m}^2)}$ para $C_{1u} = 0$, (3.31)

e por substituição de C_{1m} , dado acima, obtém-se

$$W_{1t} = \sqrt{U_{1t}^2 + \frac{\dot{m}^2}{\rho_1^2 \pi^2 (r_{1t}^2 - r_{1h}^2)^2}}.$$
(3.32)

Como se conclui da equação anterior, se a massa específica e o caudal \dot{m} forem constantes então o primeiro termo, do lado direito da equação, aumenta em função de r_{1t} (para uma velocidade de rotação constante).

O segundo termo decresce à medida que r_{1t} aumenta. A velocidade relativa W_{1t} tem um valor mínimo para um determinado caudal e a determinado r_{1t} .

Dividindo a equação para U_{1t} dada acima por a_1 , obtemos

$$\frac{r_{1t}U_2a_{01}}{r_{2}a_{01}a_1} = \sqrt{M_{1rt}^2 - M_1^2}. (3.33)$$

Pode substituir-se $(\frac{a_{01}}{a_1})^2 = 1 + \frac{k-1}{2}M_1^2$,

$$\frac{r_{1t}}{r_2} \frac{U_2}{a_{01}} = \sqrt{\frac{M_{1rt}^2 - M_1^2}{1 + \frac{k-1}{2}M_1^2}}$$
(3.34)

e dividindo agora a equação acima para W_{1t} por $\dot{m}^* = \pi r_2^2 \rho^* C^*$ obtemos,

$$\frac{\dot{m}}{\dot{m}^*} = \left(\frac{r_{1t}^2}{r_2^2} - \frac{r_h^2}{r_2^2}\right) \frac{\rho_{1t}}{\rho^*} \frac{C_{1t}}{C^*},\tag{3.35}$$

$$\frac{\rho_1}{\rho^*} = \left(\frac{(k+1)/2}{1 + \frac{k-1}{2}M_1^2}\right)^{1/(k-1)},\tag{3.36}$$

$$\frac{C_1}{C^*} = M_1 \sqrt{\frac{(k-1)/2}{1 + \frac{k-1}{2}M_1^2}}. (3.37)$$

Aqui ρ^* e C^* são a massa específica e a velocidade que resultam de uma expansão isentrópica desde as condições à entrada do rotor até à velocidade do som. Por seu lado \dot{m}^* representa o caudal mássico através de um canal de raio r_2 , cuja velocidade e massa específica são C^* e ρ^* .

Em condições de escoamento uniforme à entrada $C_{1t} = C_1$ e $\rho_{1t} = \rho_1$,

$$\frac{\dot{m}/\dot{m}^*}{\left(\frac{r_{1t}^2}{r_2^2} - \frac{r_h^2}{r_2^2}\right)} = M_1 \left(\frac{(k+1)/2}{1 + \frac{k-1}{2}M_1^2}\right)^{\frac{k+1}{2(k-1)}}.$$
(3.38)

Para um compressor, o valor do raio ao cubo r_{1h} é decidido em função do raio do veio. E o raio do veio é calculado em função do binário que o veio tem de transmitir ao rotor, usando considerações de resistência de materiais. Portanto, em geral, há apenas liberdade de projeto para definir o valor do raio periférico à entrada r_{1t} .

Para um determinado valor de $\frac{U_2}{a_{01}}$ e $\frac{r_{1h}}{r_2}$ a relação entre o caudal, $\frac{r_{1t}}{r_2}$ e M_{1rt} é mostrada na figura 3.29. Estes valores foram obtidos da equação (3.34) e seguintes. Observam-se as curvas de M_{1rt} constante,

Enquanto os compressores, ventiladores, e bombas centrífugas podem ser tratados num capítulo único, com as turbinas isso já não acontece. De facto, estas máquinas apresentam um conjunto diverso de geometrias que implicam o seu tratamento em capítulo separado. No entanto, todas as ferramentas analíticas apresentadas nos capítulos precedentes são usadas aqui para calcular o desempenho destas turbinas hidráulicas.

6.1 Energia hidroelétrica

A produção de energia hidroelétrica, de forma eficiente e generalizada, só se tornou possível em meados do século XIX. No entanto, diversos mecanismos de aproveitamento da energia hídrica já eram usados de forma sistemática desde, pelo menos, o início do império romano, como vimos no capítulo introdutório.

A produção de energia hidroelétrica implica controlar o escoamento numa determinada queda de água para fazer o seu aproveitamento energético. A altura de queda que geralmente está disponível nestes empreendimentos pode variar desde alguns metros, em estuários, até atingir $2000\,m$ em casos especiais de algumas barragens. A sala da turbina e do gerador está geralmente localizada a um nível inferior ao da albufeira de montante, de forma a maximizar a queda disponível. A conduta adutora

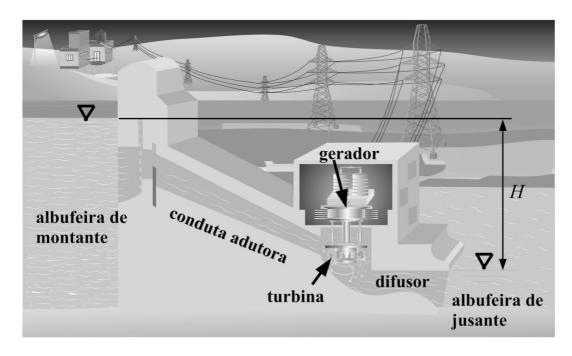


Figura 6.1: Representação esquemática de uma central hidroelétrica para quedas baixas. [Imagem de base reproduzida sob autorização de Shutterstock].

conduz a água desde a barragem até à turbina. Esta conduta pode ser feita em aço ou, nos casos de maior dimensão, em betão. A figura 6.1 mostra um esquema típico de uma instalação hidroelétrica para quedas de baixo valor. O desnível útil inclui a altura desde a turbina até à albufeira ou estuário de jusante, em vez de só a altura até à turbina.

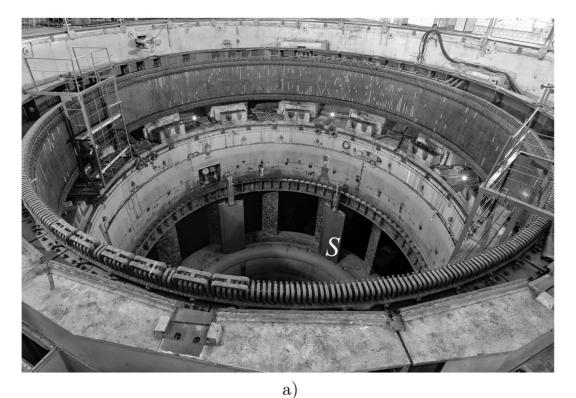
6.2 Classificação dos diferentes tipos de turbina

As turbinas hidráulicas são geralmente classificadas como de impulso ou de reação. De todas as que foram desenvolvidas ao longo dos anos, as mais populares são: a) de impulso, as Pelton; b) de reação, as Francis, Kaplan e Bolbo. A gama de velocidades específicas de operação pode observar-se na figura 5.6. A figura 6.2 apresenta uma turbina das mais comuns, trata-se de uma moderna turbina Francis.

No caso de uma turbina de impulso, a energia representada pela queda disponível é convertida pelas tubeiras num jato de água, sendo que este impacta sobre as pétalas, pás, ou baldes. Cada pá é formada por duas metades côncavas, sendo que o jato atinge o centro da pá na união entre essas duas concavidades. A regulação do caudal que forma o jato permite regular a potência da máquina. Nestas máquinas o ponto 3 corresponde à entrada da tubeira, o ponto 2 é logo após a tubeira, e o ponto 1 situa-se após a saída das pás, ou pétalas.



Figura 6.2: Uma das tipologias mais populares é a turbina Francis, aqui representada na versão de eixo horizontal, para potências mais baixas. É visível instalação final e a componente da voluta sem rotor (lado direito) [Reproduzido sob licença de Shutterstock]


No caso de máquinas de reação, como é o caso das Francis e Kaplan, o escoamento passa no interior de um rotor que tem a forma radial, mista, ou axial. As turbinas hidráulicas são de andar único, visto que o elevado valor da massa específica permite converter sem grande dificuldade a energia disponível.

6.2.1 A turbina Pelton

Esta máquina foi inventada por Lester Pelton, nos EUA, em torno de 1880. Trata-se de uma máquina de impulso que é adequada para alturas de queda superiores a $300 \, m$. A água é admitida pelas pás na forma de um jato que é tangente à roda. O ângulo de entrada na pá deve ser próximo de 180° . A velocidade específica n_s destas máquinas assume valores da ordem de $0.05 - 0.22 \, rad/s$, veja-se a figura 5.6.

As máquinas Pelton são classificadas, em função da orientação do seu eixo, em máquinas de eixo horizontal ou vertical. As Pelton de eixo horizontal são formadas por uma única roda, podendo ter jato único até quádruplo, veja-se a figura 6.3. A maior parte das máquinas de roda única é suportada pelas chumaceiras do próprio gerador. Quando há duas rodas, então o gerador pode ser colocado entre elas. Uma das instalações de maior dimensão está situada em Bieudron, nos Alpes Suíços. A central produz $1\,269\,MW$ usando três grupos Pelton. A hidroelétrica cria uma queda de $1\,869\,m$ e cada máquina turbina $25\,m^3/s$ de água, atingindo rendimentos de 92%.

No caso das máquinas de eixo vertical é possível colocar até seis tubeiras de admissão, o que permite uma melhor regulação do funcionamento.

b) Figura 6.11: Instalação com turbina Kaplan: a) Está indicada com "S"uma pá do estator, ou distribuidor; b) Apresenta-se o mecanismo de controlo em anel das pás do estator. A máquina tem disponível $12.4\,m$ de queda útil e produz $78\,MW$.[Imagem de base, modificada, reproduzida sob licença de Shutterstock]

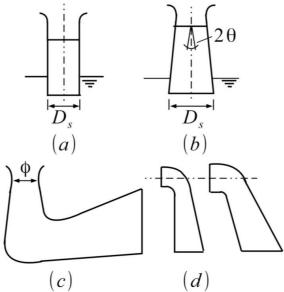


Figura 6.12: Diferentes tipos de difusor: a) Cilíndrico; b) Cónico $2\theta \approx 8-18^o$; c) Difusor curvado; d) Difusores de eixo horizontal.

a área à entrada do difusor como sendo A_{di} , e à saída como A_{do} , então é possível obter o comprimento do difusor de,

$$\frac{A_{do} - A_{di}}{L} = 0.20 - 0.125. ag{6.34}$$

As perdas mais significativas são devidas a fricção viscosa e a separação do escoamento. O projetista deve ter especial cuidado com estes dois aspetos. Ao introduzir uma determinada quantidade de rotação no escoamento (C_{1u} não exatamente igual a zero), para o caso dos rotores Francis, verificou-se que isso tinha um efeito benéfico sobre a redução da cavitação e da extensão das zonas de separação. Na verdade, verificou-se que os difusores bem projetados para recuperar a energia cinética são mais sensíveis à ocorrência de cavitação. Isso acontece porque os bons difusores criam mais sucção à saída da turbina. Tem de haver um compromisso entre estas duas situações.

De facto, o difusor é considerado parte da turbina, e portanto a saída do difusor é o final da zona de sucção da turbina. A velocidade da água à entrada do difusor é C_i e à sua saída é C_s . A velocidade à entrada do difusor é considerada, em primeira aproximação, igual à da saída do rotor. Assim, o rendimento do difusor pode ser definido como a razão entre a altura de energia que ele permite recuperar e a que idealmente se poderia recuperar.

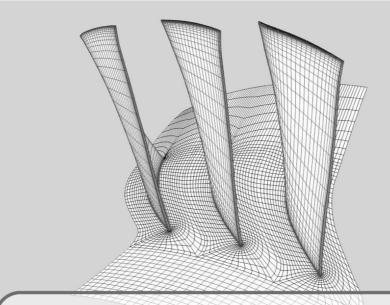
Podemos então escrever,

$$\eta_{\text{difusor}} = \frac{\left(\frac{C_i^2}{2} - \frac{C_s^2}{2} - E_{Perd.}\right)}{\left(\frac{C_i^2}{2} - \frac{C_s^2}{2}\right)},\tag{6.35}$$

onde indicámos a energia perdida como E_{Perd} .

Hoje em dia é de esperar que o rendimento atinja 90% para os cónicos e mais de 80% para os difusores curvos.

6.10 Comparação entre os quatro diferentes tipos de turbina


Na figura 6.13 apresenta-se a variação do rendimento, em valores de pico de projeto, para os três tipos de turbina. Estes valores máximos de rendimento, para a mesma máquina, dependem do valor da velocidade específica. Como se pode observar as máquinas axiais com maior velocidade específica são as que apresentam os melhores rendimentos. Se forem para velocidades específicas baixas, então o rendimento máximo da máquina Kaplan pode ficar abaixo da Francis, para a mesma velocidade específica. As turbinas Pelton operam numa gama muito limitada de velocidades específicas, e o seu rendimento é o mais baixo de todos.

Características de regulação para as quatro turbinas

Na figura 6.14 é apresentada a variação do rendimento para as quatro tipologias de turbina à carga total e em carga parcial. Verifica-se que o rendimento da máquina Pelton é praticamente constante numa gama vasta de condições de carga (ou frações de carga). Isto consegue-se nestas turbinas porque a regulação pela válvula de lança é extremamente eficiente, como comentado anteriormente. No entanto, o rendimento da roda Pelton não é muito elevado, pois trata-se de uma máquina do tipo de admissão parcial, e a sua velocidade específica é baixa.

A turbina Francis tem um rendimento de pico superior ao da Pelton, como era de esperar, visto ter uma velocidade específica maior. No entanto, a sua gama de operação a carga parcial é inferior à da Pelton, visto que a regulação é apenas feita pelas pás do estator (distribuidor).

A turbina Kaplan tem o maior rendimento de pico, o qual é característico de máquinas axiais. Além disso, como tem pás ajustáveis no estator e no rotor, ela consegue manter as suas boas características de rendimento numa gama variada de frações de carga. As máquinas do tipo bolbo, como são do tipo axial, também atingem valores muito elevados de rendimento, ao nível das Kaplan. No entanto, como as pás

7. Análise e projeto numérico de turbomáquinas

Apresentamos agora as ferramentas computacionais, baseadas em modelos numéricos, que permitem projetar as turbomáquinas modernas em detalhe. Se no início dos anos 90 estas metodologias apenas permitiam projetar pás em 2D, elas estenderam-se posteriormente ao projeto de pás em 3D, incluindo ao projeto de turbomáquinas completas. Estes métodos podem ser usados como ferramentas de análise ou como ferramentas de projeto. Neste último caso em modo inverso ou acoplados a algoritmos de otimização, por análise iterativa.

7.1 Projeto na indústria de turbinas de gás

O projeto é normalmente o objetivo último da análise efetuada sobre determinado sistema, quer essa análise seja feita com recurso a métodos experimentais ou utilizando a modelação computacional. A maior parte da investigação conduzida nos últimos 30 anos, em particular no domínio da mecânica computacional, tem sido dirigida para a tarefa de modelar e analisar o comportamento de determinados aspetos de um sistema mecânico. O progresso atingido neste domínio, associado ao aumento exponencial da capacidade de cálculo dos computadores, conduziu ao desenvolvimento de métodos de modelação numérica tri-dimensional. As aplicações são vastas e abrangem a CFD (Computational Fluid Dy-

namics - Dinâmica dos Fluidos Computacional, DFC), a modelação da combustão, a análise de estruturas utilizando técnicas de elementos finitos, e a modelação computacional de campos eletromagnéticos, para só referir algumas das aplicações. No caso particular das turbinas de gás, e apesar das limitações inerentes a algumas das aproximações introduzidas pelos modelos físico-matemáticos que lhe estão associados, a modelação numérica permite já analisar o comportamento de variados aspetos destas máquinas com uma precisão aceitável para a maioria das aplicações. Na realidade, estas ferramentas são já intensivamente utilizadas na indústria de turbinas de gás e têm sido responsáveis pela contínua melhoria do desempenho destas máquinas, bem como pela redução do seu ciclo de projeto.

A utilização das atuais ferramentas de análise computacional no projeto de turbinas de gás assenta ainda bastante no conhecimento e intuição do projetista. Numa primeira fase efetua-se uma análise aos elementos de determinada turbina, ou projeto de turbina, de forma a caracterizar o seu desempenho. Posteriormente, cabe ao projetista identificar as possibilidades de aumento do rendimento, identificando as variáveis relevantes e formulando as correspondentes alterações de projeto. No entanto, em particular no projeto de turbinas de gás, a situação pode tornar-se bastante complexa pois não há uma única pessoa responsável pelo projeto, mas sim uma equipa pluridisciplinar de pessoas, e com diferentes pessoas a serem responsáveis por diferentes aspetos do desempenho global do sistema.

Existem muitos aspetos que podem ser considerados para melhorar a precisão e aumentar a capacidade das diferentes ferramentas de análise dos elementos constituintes de turbinas de gás, no entanto, pensa-se que o maior avanço na análise e projeto computacional destas máquinas provirá da interligação entre as diferentes ferramentas individuais que interagem no decurso do projeto. O objetivo destas ferramentas não é a substituição do projetista por uma caixa preta que forneça um projeto ótimo. Trata-se simplesmente de proporcionar ao projetista um ambiente que lhe permita definir o domínio do projeto, assegurando-lhe a possibilidade de explorar o peso relativo dos diferentes componentes. O que permitirá também que este investigue novas variantes ao projeto provenientes de uma fonte exterior à sua intuição, pois esta baseia-se inteiramente na sua experiência passada. Esta estratégia de trabalho deve também conduzir a uma redução do ciclo de projeto, bem como a uma diminuição dos custos com origem em projetos falhados. Esta

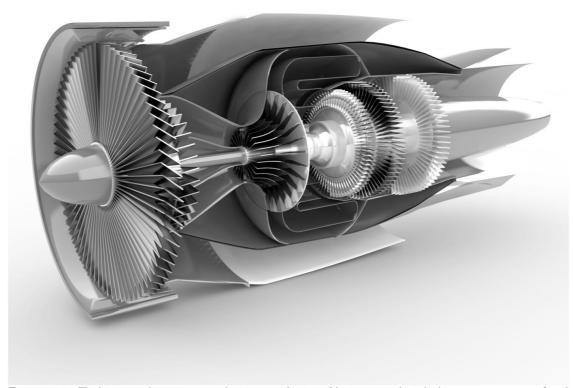


Figura 7.1: Turbina a gás para propulsão aeronáutica. Neste caso é visível que a seguir ao *fan* é usado um compressor centrífugo. Esta geometria conduz a máquinas mais compactas do que as baseadas em andares axiais.

última estratégia beneficia grandemente da automatização do processo de análise e projeto utilizando ferramentas de modelação numérica.

As turbinas de gás, e as turbomáquinas em geral, estão entre os sistemas de engenharia mais complexos, veja-se a figura 7.1. Note-se que mesmo não contando com os pequenos componentes — como sejam as porcas, parafusos e rebites — ainda assim estas turbomáquinas podem ter centenas de milhar de componentes. Isto conduz a mais de um milhão de importantes parâmetros de projeto e a muitos outros de menor importância. Portanto, uma simulação do comportamento destas turbomáquinas, não estacionária, que incluísse todos os aspetos, e designadamente os relacionados com a dinâmica dos fluidos, com as tensões e vibrações estruturais, com a transferência de calor, etc., demoraria cerca de um ano com os recursos disponíveis numa grande empresa como a Rolls-Royce plc. Uma simulação completa para uma turbina de gás de avião que incluísse a descolagem, as condições à altitude de cruzeiro e a aterragem seria extremamente dispendiosa, ainda que recorresse a modelos físico-matemáticos simplificados. Este elevado nível de complexidade tem sido contornado com uma abordagem ao projeto do tipo hierárquica.

TURBOMÁQUINAS

Uma abordagem moderna

Nesta obra apresentam-se as matérias relevantes para um curso avançado de turbomáquinas, incluindo aspetos importantes para o projeto e a análise do seu funcionamento. A informação é exposta de forma sistematizada e analiticamente rigorosa, sendo profusamente ilustrada, facilitando assim a assimilação dos aspetos mais complexos. Utiliza-se uma abordagem pedagógica atual que permite tornar o conhecimento mais acessível a estudantes do ensino universitário e politécnico, assim como aos profissionais da engenharia na sua atividade diária, nas empresas, para autoformação, atualização e consulta.

O livro compreende sete capítulos. Inclui uma visão histórica, apresenta capítulos inteiros dedicados aos ventiladores, bombas, compressores, turbinas a gás centrífugas e axiais, e ainda às turbinas hidráulicas e análise dimensional. O último capítulo trata do projeto computacional avançado de turbomáquinas. Em cada capítulo são apresentados exemplos de exercícios resolvidos.

JOSÉ C. PÁSCOA é Professor e Investigador do Center for Mechanical and Aerospace Science and Technology da Universidade da Beira Interior, Há cerca de 25 anos que trabalha em turbomáquinas. Entre outros projetos, liderou um consórcio europeu sobre o estudo de ciclorotores. Foi Visiting Scholar no Rolls-Royce UTC (Aeroengines) em Loughborough, no Reino Unido. Licenciado (1995), doutorou-se em Engenharia Mecânica (2008) no projeto inverso de turbinas a gás, e possuí também o título de Agregado em Engenharia Mecânica (2017).

