Estrutura e funções da pele

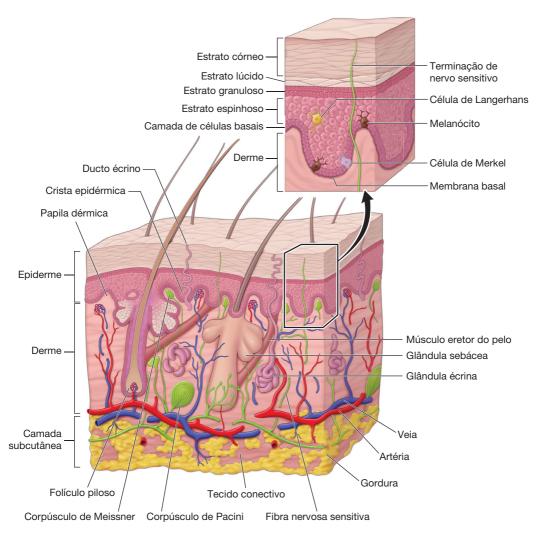
Kimberly Bohjanen

Introdução ao capítulo / 1
Função de barreira / 1
Função imunológica / 1
Produção de melanina e proteção contra lesões por radiação ultravioleta / 2
Síntese de vitamina D / 3

Sensação / 3 Regulação térmica / 4 Proteção contra traumatismo / 5 Identidade e estética / 5 Referências / 5

INTRODUÇÃO AO CAPÍTULO

A pele é sede de muitos processos complexos e dinâmicos, como demonstra a Figura 1-1 e a Tabela 1-1. Entre esses processos estão funções de barreira e imunológicas, produção de melanina, síntese de vitamina D, sensações, regulação térmica, proteção contra traumatismos e composição estética.


FUNÇÃO DE BARREIRA

A barreira epidérmica protege a pele de microrganismos, substâncias químicas, traumatismos físicos e ressecamento por perda transepidérmica de água. 1-3 Essa barreira é criada pela diferenciação dos queratinócitos à medida que se movem da camada de células basais para o estrato córneo. Os queratinócitos da epiderme são produzidos e renovados por células-tronco existentes na camada basal, o que resulta em substituição da epiderme a aproximadamente cada 28 dias. Essas células levam 14 dias para atingir o estrato córneo e outros 14 dias para descamar.

Os queratinócitos produzem as queratinas, proteínas estruturais que formam filamentos que fazem parte do citoesqueleto do queratinócito. No estrato espinhoso, filamentos de queratina irradiam a partir do núcleo e conectam-se aos desmossomos, estruturas proeminentes ao microscópio, conferindo às células um aspecto "espinhoso". À medida que as células se movem para o estrato granuloso, formam-se grânulos querato-hialinos compostos por queratina e profilagrina. A profilagrina é convertida em filagrina (proteína de agregação de filamento), responsável por agregar e alinhar os filamentos de queratina em feixes paralelos e altamente comprimidos que formam a matriz para as células do estrato córneo. Mutações no gene da filagrina estão associadas à ictiose vulgar e à dermatite atópica. Conforme os queratinócitos se movem para o estrato córneo, perdem seus núcleos e organelas e desenvolvem uma forma hexagonal plana. Essas células são empilhadas, formando um padrão em "tijolos e argamassa" com 15 a 25 camadas de células (tijolos) circundadas por lipídeos (argamassa). Os lipídeos são ceramidas, ácidos graxos livres e colesterol.

FUNÇÃO IMUNOLÓGICA

As células epiteliais na interface entre a pele e o meio ambiente representam a primeira linha de defesa via sistema imune inato.⁴⁻⁶ As células epiteliais estão equipadas para responder a estímulos ambientais por meio de diversas estruturas, incluindo os receptores semelhantes ao toll (TLRs), que são no mínimo 10, o

▲ Figura 1-1 Corte transversal da pele.

receptor semelhante a NOD (domínio de oligomerização ligado ao nucleotídeo), lectinas tipo C e proteína de reconhecimento de peptideoglicanos. A ativação mediada por TLR das células epiteliais também está associada à produção de defensinas e catelicidinas, famílias de peptídeos antimicrobianos.

Células dendríticas fazem a ponte entre o sistema imune inato e o adaptativo. Células dendríticas dérmicas podem induzir a autoproliferação de células T e a produção de citocinas, assim como do óxido nítrico sintase. A função exata das células dendríticas epidérmicas de Langerhans tem sido objeto de muitas pesquisas, sugerindo que essas células sejam muito importantes para a modulação da resposta imune adaptativa.⁷

PRODUÇÃO DE MELANINA E PROTEÇÃO CONTRA LESÕES POR RADIAÇÃO ULTRAVIOLETA

Os melanócitos representam 10% das células na camada de células basais. Há outra população de melanócitos no folículo piloso responsável pela cor do cabelo e pela substituição dos melanócitos epidérmicos, quando necessário (Fig. 1-2). Os melanócitos produzem melanina, um polímero pigmentado que absorve a faixa ultravioleta (UV) do espectro luminoso. A melanina é sintetizada a partir da tirosina, passando por várias etapas que requerem a enzima tirosinase. A melanina produzida é armazenada nos melanossomos, uma organela especializada. Os melanossomos

Tabela 1-1 Estrutura e função da pele

Componente	Estrutura e função
Estrato córneo	Barreira semipermeável em construção de tipo "tijolos" (células empilhadas endurecidas) e "argamassa" (ceramidas, colesterol e ácidos graxos)
Estrato granuloso	Contém querato-hialina que produz profilagrina
Estrato espinhoso	Contém desmossomos para aderência intercelular
Células de Langerhans	Células dendríticas, importantes na modulação da resposta imune adaptativa
Células de Merkel	Células especializadas com função neuroendócrina
Melanócitos	Células dendríticas que produzem melanina para proteção contra radiação ultravioleta
Camada de células basais	Contém as células-tronco que se dividem e produzem o restante dos queratinócitos na epiderme
Membrana basal	Interface entre epiderme e derme
Substância fundamental	Gel amorfo de mucopolissacarídeos que é o substrato da derme
Colágeno	Rede de proteínas fibrosas responsáveis pela força tênsil da pele
Fibras elásticas	Proteínas fibrosas responsáveis pela elasticidade da pele
Fibroblastos	Células que produzem a substância fundamental, colágeno e as fibras elásticas
Mastócitos	Leucócitos que liberam histamina e heparina
Histiócitos/macrófagos	Leucócitos que fagocitam e apresentam os antígenos
Glândulas écrinas	Glândulas sudoríferas que ajudam na regulação térmica
Glândulas apócrinas	Glândulas axilares e anogenitais responsáveis pelo odor corporal
Glândulas sebáceas	Componentes da unidade pilossebácea responsáveis pela produção de sebo
Folículo piloso	Componente da unidade pilossebácea responsável pela produção da fibra pilosa
Nervos somáticos, sensitivos e simpáticos autônomos	Inervação de vasos sanguíneos, glândulas e folículos pilosos
Corpúsculos de Meissner	Receptores nervosos especializados para tato superficial
Corpúsculos de Pacini	Receptores nervosos especializados para pressão e vibração
Vasos sanguíneos	Dois plexos horizontais conectados na derme que podem desviar fluxo sanguíneo
Linfáticos	Paralelos aos vasos sanguíneos com dois plexos para fluxo de plasma
Gordura	Proporciona proteção contra frio e trauma; essencial para armazenar energia e para o metabolismo de hormônios sexuais e glicocorticoides

são fagocitados por queratinócitos e transportados para uma região acima do núcleo do queratinócito, atuando como um escudo protetor contra a radiação UV. Um melanócito fornece melanossomos para até 30 a 40 queratinócitos. Todos os humanos apresentam o mesmo número de melanócitos. A variedade nos tons de cor da pele decorre de variações nos melanossomos. Os indivíduos com pele mais escura apresentam melanossomos em maior número, maiores e mais dispersos. A exposição à radiação UV estimula a produção de melanina no interior dos melanossomos e confere à pele um tom "bronzeado". A deficiência de tirosinase está associada ao albinismo; o vitiligo é causado por ausência de melanócitos.

SÍNTESE DE VITAMINA D

As principais fontes de vitamina D são constituídas pela dieta e pela produção de precursores da vitamina D pela pele. Com a exposição à luz UV, a provitamina D $_3$ (7-di-hidrocolesterol) existente na epiderme é convertida em pré-vitamina D que se converte em vitamina D $_3$. A vitamina D $_3$ é convertida para sua forma metabolicamente ativa no fígado e nos rins. §

SENSAÇÃO

A pele é um dos principais locais de interação com o meio ambiente e muitos tipos de estímulo são processados pelos sistemas nervosos central e periférico. 9,10

▲ Figura 1-2 Melanócitos na camada de células basais e na região do bulbo piloso. Imagem confocal de nervos (azul) e de melanócitos (amarelo) na epiderme e na região do bulbo piloso de folículo anágeno no couro cabeludo. Montagem de três campos de visão. A amostra foi imunocorada com anticorpos para marcador pan-neuronal PGP9.5 (azul) e para melanócitos (Mels-5) (amarelo). (Reproduzida, com permissão, de Marna Ericson, PhD.)

Inicialmente, os nervos cutâneos eram classificados como "aferentes", controlando a função das glândulas sudoríferas e o fluxo sanguíneo, ou "eferentes", transmitindo sinais sensoriais ao sistema nervoso central. Após a descoberta do neuropeptídeo substância P (SP) e de outros neuropeptídeos nos nervos sensitivos, foram descobertas e relatadas muitas propriedades tróficas das fibras nervosas e dos neuropeptídeos.

Há três tipos principais de fibras nervosas na pele:

- Fibras Aβ grandes, intensamente mielinizadas, que transmitem a sensibilidade tátil.
- Fibras Aδ fibras nervosas pouco mielinizadas, envolvidas na transmissão de estímulos dolorosos curtos e rápidos.
- Fibras C fibras nervosas não mielinizadas que transmitem dor e sensação de prurido.

Feixes de fibras nervosas mescladas formam um plexo, a partir do qual fibras nervosas específicas estendem-se na direção de seus alvos particulares. A primeira série encontra-se sob a epiderme e inerva a própria epiderme e os mecanorreceptores cutâneos ou derme superior (Fig. 1-3).

A segunda e a terceira séries estão localizadas entre a derme e a hipoderme ou na hipoderme profunda e inervam folículos pilosos, músculos eretores dos pelos e das glândulas sudoríferas, assim como a derme inferior e a hipoderme. Todos os três plexos inervam vasos sanguíneos, células musculares lisas e mastócitos e, assim, conectam diferentes grupos de células cutâneas ao encéfalo.

REGULAÇÃO TÉRMICA

A pele ajuda a regular e manter a temperatura central do corpo por meio da regulação do suor e variação do fluxo sanguíneo na pele. A evaporação do suor contribui para o controle da temperatura corporal. Em condições normais, são produzidos 900 mL de suor por dia. Quando há aumento da atividade física ou aumento da temperatura ambiente, é possível produzir 1,4 a 3 L de suor por hora. 11

A regulação do fluxo sanguíneo nos capilares, nas papilas dérmicas e em outros vasos cutâneos tem papel importante na perda de calor por convecção e na conservação de calor. Normalmente, o fluxo sanguíneo na pele representa cerca de 5% do débito cardíaco, mas em temperaturas muito baixas esse fluxo pode cair para próximo de zero e, em situações de calor extremo, chegar a 60%. ¹² A disfunção da termorregulação pode levar à hipertermia ou à hipotermia.

▲ Figura 1-3 Fibras nervosas e vasos sanguíneos epidérmicos. Imagem confocal de fibras nervosas epidérmicas (verde), colágeno tipo IV (vermelho) e do neuropeptídeo denominado peptídeo relacionado ao gene da calcitonina (CGRP, do inglês calcitonin gene-related peptide) (azul) no couro cabeludo humano. O limite entre derme/epiderme é definido por colágeno tipo IV (vermelho). A amostra foi imunocorada com anticorpos para o produto gênico proteico (PGP) 9,5 (verde), colágeno tipo IV (vermelho) e CGRP (azul). (Reproduzida, com permissão, de Marna Ericson, PhD.)

PROTEÇÃO CONTRA TRAUMATISMO

A espessura da derme varia entre 1 e 4 mm. Ela protege e amortece as estruturas subjacentes contra lesões e proporciona apoio para vasos sanguíneos, nervos e estruturas anexas. É separada da epiderme pela membrana basal, que é criada pela camada basal da epiderme. O colágeno é responsável pela força tênsil da pele e representa 75% do peso seco da derme. As falhas na síntese do colágeno estão associadas a doenças como síndrome do Ehlers-Danlos (hiperextensão de articulações e da pele). As fibras elásticas são responsáveis pela elasticidade e resistência da pele e representam 2 a 3% do peso seco da pele. Falhas na formação das fibrilas elásticas estão associadas à cútis laxa e à síndrome de Marfan.

IDENTIDADE E ESTÉTICA

A percepção da etnia, idade, estado de saúde e atratividade é afetada pelo aspecto da pele e do cabelo. Fotodano, erupções, distúrbios do cabelo, distúrbios pigmentares e acne podem produzir efeitos profundos na autoimagem e em como o indivíduo é percebido pelos outros.

REFERÊNCIAS

- 1. Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 2012;30(3):257-262. PMID: 22507037.
- 2. Hwa C, Bauer EA, Cohen DE. Skin biology. Dermatol Ther. 2011;24(5):464-470. PMID: 22353152.
- 3. Brown SI, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3):751-762. PMID: 22158554.
- 4. Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012;12(7):503-516. PMID: 22728527.
- 5. Di Meglio P, Perera GK, Nestle FO. The multitasking organ: recent insights into skin immune function. Immunity. 2011;35(6):857-869. PMID: 22195743.
- 6. Nestle FO, Kaplan DH, Barker J. Mechanisms of disease: psoriasis. N Engl J Med. 2009;361(5):496-509. PMID: 19641206.
- 7. Kaplan DH. Langerhans cells: not your average dendritic cell. Trends Immunol. 2010;31(12):437. PMID:
- 8. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3): 539-549. PMID: 18435612.
- 9. Peters EM, Ericson ME, Hosi J, et al. Neuropeptide control mechanisms in cutaneous biopsy: physiological mechanism and clinical significance. J Invest Dermatol. 2006;126(9): 1937-1947. PMID: 16912691.
- 10. Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 2010:33(12): 550-558, PMID: 21056479.
- 11. Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol. 2006;100(5):1692-1701. PMID: 16614366.
- 12. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J Appl Physiol. 2010;109(4):1221-1228. PMID: 20448028.